Filtros : "Constraint programming" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: APRENDIZAGEM, ALGORITMOS DE SCHEDULING, PROGRAMAÇÃO POR RESTRIÇÕES, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Kennedy Anderson Guimarães de. The flexible job shop scheduling problem with sequence flexibility and position-based learning effect. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/. Acesso em: 02 jan. 2026.
    • APA

      Araujo, K. A. G. de. (2024). The flexible job shop scheduling problem with sequence flexibility and position-based learning effect (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/
    • NLM

      Araujo KAG de. The flexible job shop scheduling problem with sequence flexibility and position-based learning effect [Internet]. 2024 ;[citado 2026 jan. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/
    • Vancouver

      Araujo KAG de. The flexible job shop scheduling problem with sequence flexibility and position-based learning effect [Internet]. 2024 ;[citado 2026 jan. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/
  • Source: Computers & Operations Research. Unidades: IME, EP

    Subjects: ALGORITMOS DE SCHEDULING, HEURÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUNARDI, Willian Tessaro et al. Mixed Integer linear programming and constraint programming models for the online printing shop scheduling problem. Computers & Operations Research, v. 123, p. 1-20, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cor.2020.105020. Acesso em: 02 jan. 2026.
    • APA

      Lunardi, W. T., Birgin, E. J. G., Laborie, P., Ronconi, D. P., & Voos, H. (2020). Mixed Integer linear programming and constraint programming models for the online printing shop scheduling problem. Computers & Operations Research, 123, 1-20. doi:10.1016/j.cor.2020.105020
    • NLM

      Lunardi WT, Birgin EJG, Laborie P, Ronconi DP, Voos H. Mixed Integer linear programming and constraint programming models for the online printing shop scheduling problem [Internet]. Computers & Operations Research. 2020 ; 123 1-20.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.cor.2020.105020
    • Vancouver

      Lunardi WT, Birgin EJG, Laborie P, Ronconi DP, Voos H. Mixed Integer linear programming and constraint programming models for the online printing shop scheduling problem [Internet]. Computers & Operations Research. 2020 ; 123 1-20.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.cor.2020.105020
  • Source: Operations Research Perspectives. Unidade: ICMC

    Subjects: EMBALAGENS, CORTE, COMPUTAÇÃO APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHERRI, Luiz Henrique et al. Optimality in nesting problems: new constraint programming models and a new global constraint for non-overlap. Operations Research Perspectives, v. 6, p. 1-19, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.orp.2019.100125. Acesso em: 02 jan. 2026.
    • APA

      Cherri, L. H., Carravilla, M. A., Ribeiro, C., & Toledo, F. M. B. de. (2019). Optimality in nesting problems: new constraint programming models and a new global constraint for non-overlap. Operations Research Perspectives, 6, 1-19. doi:10.1016/j.orp.2019.100125
    • NLM

      Cherri LH, Carravilla MA, Ribeiro C, Toledo FMB de. Optimality in nesting problems: new constraint programming models and a new global constraint for non-overlap [Internet]. Operations Research Perspectives. 2019 ;6 1-19.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.orp.2019.100125
    • Vancouver

      Cherri LH, Carravilla MA, Ribeiro C, Toledo FMB de. Optimality in nesting problems: new constraint programming models and a new global constraint for non-overlap [Internet]. Operations Research Perspectives. 2019 ;6 1-19.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.orp.2019.100125

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026