Filtros : "Complex vector fields" Removido: "MATEMATICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS SOBREDETERMINADOS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDEIRA, Cleber de e ZANI, Sérgio Luís. A class of globally non-solvable involutive systems on the torus. Journal of Pseudo-Differential Operators and Applications, v. 10, n. Ju 2019, p. 455-474, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11868-018-0252-1. Acesso em: 26 jan. 2026.
    • APA

      Medeira, C. de, & Zani, S. L. (2019). A class of globally non-solvable involutive systems on the torus. Journal of Pseudo-Differential Operators and Applications, 10( Ju 2019), 455-474. doi:10.1007/s11868-018-0252-1
    • NLM

      Medeira C de, Zani SL. A class of globally non-solvable involutive systems on the torus [Internet]. Journal of Pseudo-Differential Operators and Applications. 2019 ; 10( Ju 2019): 455-474.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/s11868-018-0252-1
    • Vancouver

      Medeira C de, Zani SL. A class of globally non-solvable involutive systems on the torus [Internet]. Journal of Pseudo-Differential Operators and Applications. 2019 ; 10( Ju 2019): 455-474.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/s11868-018-0252-1
  • Source: Journal of Functional Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, VETORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOONENS, Laurent e PICON, Tiago Henrique. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields. Journal of Functional Analysis, v. 275, n. 5, p. 1073-1099, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jfa.2018.05.018. Acesso em: 26 jan. 2026.
    • APA

      Moonens, L., & Picon, T. H. (2018). Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields. Journal of Functional Analysis, 275( 5), 1073-1099. doi:10.1016/j.jfa.2018.05.018
    • NLM

      Moonens L, Picon TH. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields [Internet]. Journal of Functional Analysis. 2018 ; 275( 5): 1073-1099.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jfa.2018.05.018
    • Vancouver

      Moonens L, Picon TH. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields [Internet]. Journal of Functional Analysis. 2018 ; 275( 5): 1073-1099.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jfa.2018.05.018
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, v. 8, n. 4, p. 551-583, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11868-017-0217-9. Acesso em: 26 jan. 2026.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2017). Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, 8( 4), 551-583. doi:10.1007/s11868-017-0217-9
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, v. 444, n. 1, p. 527-549, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.06.045. Acesso em: 26 jan. 2026.
    • APA

      Bergamasco, A. P., Medeira, C. de, Kirilov, A., & Zani, S. L. (2016). On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, 444( 1), 527-549. doi:10.1016/j.jmaa.2016.06.045
    • NLM

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jmaa.2016.06.045
    • Vancouver

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jmaa.2016.06.045
  • Source: Communications in Partial Differential Equations. Unidades: ICMC, IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e CORDARO, Paulo Domingos e PETRONILHO, Gerson. Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, v. 29, n. 5/6, p. 785-819, 2004Tradução . . Disponível em: https://doi.org/10.1081/PDE-120037332. Acesso em: 26 jan. 2026.
    • APA

      Bergamasco, A. P., Cordaro, P. D., & Petronilho, G. (2004). Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, 29( 5/6), 785-819. doi:10.1081/PDE-120037332
    • NLM

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1081/PDE-120037332
    • Vancouver

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1081/PDE-120037332

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026