Filtros : "Cauchy problem" Limpar

Filtros



Refine with date range


  • Source: Mathematische Nachrichten. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez. Existence and uniqueness of global solution for abstract second order differential equations with state‐dependent delay. Mathematische Nachrichten, v. 295, n. 1, p. 124-139, 2022Tradução . . Disponível em: https://doi.org/10.1002/mana.201900463. Acesso em: 22 jan. 2026.
    • APA

      Morales, E. A. H. (2022). Existence and uniqueness of global solution for abstract second order differential equations with state‐dependent delay. Mathematische Nachrichten, 295( 1), 124-139. doi:10.1002/mana.201900463
    • NLM

      Morales EAH. Existence and uniqueness of global solution for abstract second order differential equations with state‐dependent delay [Internet]. Mathematische Nachrichten. 2022 ; 295( 1): 124-139.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1002/mana.201900463
    • Vancouver

      Morales EAH. Existence and uniqueness of global solution for abstract second order differential equations with state‐dependent delay [Internet]. Mathematische Nachrichten. 2022 ; 295( 1): 124-139.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1002/mana.201900463
  • Source: Journal of Hyperbolic Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MODELOS DE ONDAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, v. 13, n. 2, p. 417-439, 2016Tradução . . Disponível em: https://doi.org/10.1142/s0219891616500132. Acesso em: 22 jan. 2026.
    • APA

      Ebert, M. R., & Reissig, M. (2016). Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, 13( 2), 417-439. doi:10.1142/s0219891616500132
    • NLM

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1142/s0219891616500132
    • Vancouver

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1142/s0219891616500132

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026