Filtros : "Brouwer degree" Limpar

Filtros



Refine with date range


  • Source: Zeitschrift für Analysis und ihre Anwendungen. Unidade: IME

    Subjects: OPERADORES, TOPOLOGIA ALGÉBRICA, ANÁLISE GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e PERA, Maria Patrizia. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree. Zeitschrift für Analysis und ihre Anwendungen, v. 43, n. 1/2, p. 169-197, 2024Tradução . . Disponível em: https://doi.org/10.4171/ZAA/1750. Acesso em: 15 fev. 2026.
    • APA

      Benevieri, P., Calamai, A., & Pera, M. P. (2024). An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree. Zeitschrift für Analysis und ihre Anwendungen, 43( 1/2), 169-197. doi:10.4171/ZAA/1750
    • NLM

      Benevieri P, Calamai A, Pera MP. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2024 ; 43( 1/2): 169-197.[citado 2026 fev. 15 ] Available from: https://doi.org/10.4171/ZAA/1750
    • Vancouver

      Benevieri P, Calamai A, Pera MP. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2024 ; 43( 1/2): 169-197.[citado 2026 fev. 15 ] Available from: https://doi.org/10.4171/ZAA/1750
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Subjects: ANÁLISE REAL, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MAWHIN, Jean e MESQUITA, Jaqueline Godoy. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, v. 169, p. 1-31, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2021.102991. Acesso em: 15 fev. 2026.
    • APA

      Federson, M., Mawhin, J., & Mesquita, J. G. (2021). Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, 169, 1-31. doi:10.1016/j.bulsci.2021.102991
    • NLM

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991
    • Vancouver

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026