Filtros : "Boundary value problems" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, OPERADORES NÃO LINEARES, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e FELTRIN, Guglielmo. Atypical bifurcation for periodic solutions of ϕ-Laplacian systems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2025Tradução . . Disponível em: https://doi.org/10.1017/prm.2025.10051. Acesso em: 21 jan. 2026.
    • APA

      Benevieri, P., & Feltrin, G. (2025). Atypical bifurcation for periodic solutions of ϕ-Laplacian systems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. doi:10.1017/prm.2025.10051
    • NLM

      Benevieri P, Feltrin G. Atypical bifurcation for periodic solutions of ϕ-Laplacian systems [Internet]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2025 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1017/prm.2025.10051
    • Vancouver

      Benevieri P, Feltrin G. Atypical bifurcation for periodic solutions of ϕ-Laplacian systems [Internet]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2025 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1017/prm.2025.10051
  • Source: Applied Numerical Mathematics. Unidade: ICMC

    Subjects: PROBLEMAS DE CONTORNO, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Eduardo e NOLASCO, Victor Hugo e GAMEIRO, Márcio Fuzeto. Rigorous enclosures of solutions of Neumann boundary value problems. Applied Numerical Mathematics, v. 180, p. 104-119, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.apnum.2022.05.011. Acesso em: 21 jan. 2026.
    • APA

      Ramos, E., Nolasco, V. H., & Gameiro, M. F. (2022). Rigorous enclosures of solutions of Neumann boundary value problems. Applied Numerical Mathematics, 180, 104-119. doi:10.1016/j.apnum.2022.05.011
    • NLM

      Ramos E, Nolasco VH, Gameiro MF. Rigorous enclosures of solutions of Neumann boundary value problems [Internet]. Applied Numerical Mathematics. 2022 ; 180 104-119.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.apnum.2022.05.011
    • Vancouver

      Ramos E, Nolasco VH, Gameiro MF. Rigorous enclosures of solutions of Neumann boundary value problems [Internet]. Applied Numerical Mathematics. 2022 ; 180 104-119.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.apnum.2022.05.011
  • Source: Journal of Fourier Analysis and Applications. Unidade: IME

    Subjects: PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS, ÁLGEBRAS DE OPERADORES, OPERADORES DE FREDHOLM

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e SCHROHE, Elmar. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 1147–1202, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9607-5. Acesso em: 21 jan. 2026.
    • APA

      Lopes, P. T. P., & Schrohe, E. (2019). Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities. Journal of Fourier Analysis and Applications, 25( 3), 1147–1202. doi:10.1007/s00041-018-9607-5
    • NLM

      Lopes PTP, Schrohe E. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 1147–1202.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00041-018-9607-5
    • Vancouver

      Lopes PTP, Schrohe E. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 1147–1202.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00041-018-9607-5
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, C e DATTORI DA SILVA, Paulo Leandro e MEZIANI, A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems. Journal of Differential Equations, v. No 2018, n. 10, p. 5297-5314, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2018.06.035. Acesso em: 21 jan. 2026.
    • APA

      Campana, C., Dattori da Silva, P. L., & Meziani, A. (2018). A class of planar vector fields with homogeneous singular points: solvability and boundary value problems. Journal of Differential Equations, No 2018( 10), 5297-5314. doi:10.1016/j.jde.2018.06.035
    • NLM

      Campana C, Dattori da Silva PL, Meziani A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems [Internet]. Journal of Differential Equations. 2018 ; No 2018( 10): 5297-5314.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.jde.2018.06.035
    • Vancouver

      Campana C, Dattori da Silva PL, Meziani A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems [Internet]. Journal of Differential Equations. 2018 ; No 2018( 10): 5297-5314.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.jde.2018.06.035

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026