Filtros : "Banach space" Limpar

Filtros



Refine with date range


  • Source: Analysis Mathematica. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS DE BANACH

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRANDO, Thiago e LOURENÇO, Mary Lilian. The Bishop-Phelps-Bollobás property for operators defined on c0-sum of Euclidean spaces. Analysis Mathematica, v. 51, p. 211-224, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10476-025-00070-z. Acesso em: 29 jan. 2026.
    • APA

      Grando, T., & Lourenço, M. L. (2025). The Bishop-Phelps-Bollobás property for operators defined on c0-sum of Euclidean spaces. Analysis Mathematica, 51, 211-224. doi:10.1007/s10476-025-00070-z
    • NLM

      Grando T, Lourenço ML. The Bishop-Phelps-Bollobás property for operators defined on c0-sum of Euclidean spaces [Internet]. Analysis Mathematica. 2025 ; 51 211-224.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10476-025-00070-z
    • Vancouver

      Grando T, Lourenço ML. The Bishop-Phelps-Bollobás property for operators defined on c0-sum of Euclidean spaces [Internet]. Analysis Mathematica. 2025 ; 51 211-224.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10476-025-00070-z
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ANÁLISE HARMÔNICA EM GRUPOS DE LIE, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana e GALEGO, Eloi Medina e GONZÁLEZ, Manuel. Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, v. 446, n. 1, p. 299-306, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.08.057. Acesso em: 29 jan. 2026.
    • APA

      Cely, L., Galego, E. M., & González, M. (2017). Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, 446( 1), 299-306. doi:10.1016/j.jmaa.2016.08.057
    • NLM

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
    • Vancouver

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS VETORIAIS TOPOLÓGICOS, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Maria D et al. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, v. 95, p. 323-332, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.09.011. Acesso em: 29 jan. 2026.
    • APA

      Acosta, M. D., Becerra Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., et al. (2014). The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, 95, 323-332. doi:10.1016/j.na.2013.09.011
    • NLM

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
    • Vancouver

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA DAS ESTRUTURAS, TEORIA DOS CONJUNTOS, ESPAÇOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AVILÉS, Antonio e BRECH, Christina. A Boolean algebra and a Banach space obtained by push-out iteration. Topology and its Applications, v. 158, n. 13, p. 1534-1550, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2011.05.022. Acesso em: 29 jan. 2026.
    • APA

      Avilés, A., & Brech, C. (2011). A Boolean algebra and a Banach space obtained by push-out iteration. Topology and its Applications, 158( 13), 1534-1550. doi:10.1016/j.topol.2011.05.022
    • NLM

      Avilés A, Brech C. A Boolean algebra and a Banach space obtained by push-out iteration [Internet]. Topology and its Applications. 2011 ; 158( 13): 1534-1550.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.topol.2011.05.022
    • Vancouver

      Avilés A, Brech C. A Boolean algebra and a Banach space obtained by push-out iteration [Internet]. Topology and its Applications. 2011 ; 158( 13): 1534-1550.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.topol.2011.05.022

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026