Filtros : "IQ005" "NANOPARTÍCULAS" Limpar

Filtros



Limitar por data


  • Fonte: Pharmaceuticals. Unidades: IQ, FCF

    Assuntos: PEPTÍDEOS, FUNGOS, NANOPARTÍCULAS, BACTÉRIAS PATOGÊNICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAIA, Rachel et al. Transient coatings from nanoparticles achieving broad-spectrum and high antimicrobial performance. Pharmaceuticals, v. 16, p. 1-15 art. 816, 2023Tradução . . Disponível em: https://doi.org/10.3390/ph16060816. Acesso em: 04 ago. 2024.
    • APA

      Zaia, R., Quinto, G. M., Camargo, L. C. S., Ribeiro, R. T., & Carmona-Ribeiro, A. M. (2023). Transient coatings from nanoparticles achieving broad-spectrum and high antimicrobial performance. Pharmaceuticals, 16, 1-15 art. 816. doi:10.3390/ph16060816
    • NLM

      Zaia R, Quinto GM, Camargo LCS, Ribeiro RT, Carmona-Ribeiro AM. Transient coatings from nanoparticles achieving broad-spectrum and high antimicrobial performance [Internet]. Pharmaceuticals. 2023 ; 16 1-15 art. 816.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/ph16060816
    • Vancouver

      Zaia R, Quinto GM, Camargo LCS, Ribeiro RT, Carmona-Ribeiro AM. Transient coatings from nanoparticles achieving broad-spectrum and high antimicrobial performance [Internet]. Pharmaceuticals. 2023 ; 16 1-15 art. 816.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/ph16060816
  • Fonte: Free Radical Biology & Medicine. Nome do evento: Biennial Congress of the Society for Free Radical Research International/SFRRI. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, OXIGÊNIO

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARHAT, Amanda da Anunciação e DI MASCIO, Paolo e PEDROSO, Cássio Cardoso Santos. Generation and detection of singlet oxygen (1O2) by upconversion nanoparticles (UCNP). Free Radical Biology & Medicine. New York: Instituto de Química, Universidade de São Paulo. Disponível em: https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/208/suppl/S1. Acesso em: 04 ago. 2024. , 2023
    • APA

      Farhat, A. da A., Di Mascio, P., & Pedroso, C. C. S. (2023). Generation and detection of singlet oxygen (1O2) by upconversion nanoparticles (UCNP). Free Radical Biology & Medicine. New York: Instituto de Química, Universidade de São Paulo. Recuperado de https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/208/suppl/S1
    • NLM

      Farhat A da A, Di Mascio P, Pedroso CCS. Generation and detection of singlet oxygen (1O2) by upconversion nanoparticles (UCNP) [Internet]. Free Radical Biology & Medicine. 2023 ; 208 S121 res. 262.[citado 2024 ago. 04 ] Available from: https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/208/suppl/S1
    • Vancouver

      Farhat A da A, Di Mascio P, Pedroso CCS. Generation and detection of singlet oxygen (1O2) by upconversion nanoparticles (UCNP) [Internet]. Free Radical Biology & Medicine. 2023 ; 208 S121 res. 262.[citado 2024 ago. 04 ] Available from: https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/208/suppl/S1
  • Fonte: Biomimetics. Unidade: IQ

    Assuntos: NANOTECNOLOGIA, VACINAS, LIPÍDEOS, NANOPARTÍCULAS, ADJUVANTES IMUNOLÓGICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARMONA-RIBEIRO, Ana Maria. Supramolecular nanostructures for vaccines. Biomimetics, v. 7, p. 1-21 art. 6, 2022Tradução . . Disponível em: https://doi.org/10.3390/biomimetics7010006. Acesso em: 04 ago. 2024.
    • APA

      Carmona-Ribeiro, A. M. (2022). Supramolecular nanostructures for vaccines. Biomimetics, 7, 1-21 art. 6. doi:10.3390/biomimetics7010006
    • NLM

      Carmona-Ribeiro AM. Supramolecular nanostructures for vaccines [Internet]. Biomimetics. 2022 ; 7 1-21 art. 6.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/biomimetics7010006
    • Vancouver

      Carmona-Ribeiro AM. Supramolecular nanostructures for vaccines [Internet]. Biomimetics. 2022 ; 7 1-21 art. 6.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/biomimetics7010006
  • Fonte: Pharmaceutics. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, PEPTÍDEOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ-BETANCOURT, Yunys et al. Characterization and differential cytotoxicity of gramicidin nanoparticles combined with cationic polymer or lipid bilayer. Pharmaceutics, v. 14, p. 1-18 art. 2053, 2022Tradução . . Disponível em: https://doi.org/10.3390/pharmaceutics14102053. Acesso em: 04 ago. 2024.
    • APA

      Pérez-Betancourt, Y., Zaia, R., Evangelista, M. F., Ribeiro, R. T., Roncoleta, B. M., Mathiazzi, B. I., & Carmona-Ribeiro, A. M. (2022). Characterization and differential cytotoxicity of gramicidin nanoparticles combined with cationic polymer or lipid bilayer. Pharmaceutics, 14, 1-18 art. 2053. doi:10.3390/pharmaceutics14102053
    • NLM

      Pérez-Betancourt Y, Zaia R, Evangelista MF, Ribeiro RT, Roncoleta BM, Mathiazzi BI, Carmona-Ribeiro AM. Characterization and differential cytotoxicity of gramicidin nanoparticles combined with cationic polymer or lipid bilayer [Internet]. Pharmaceutics. 2022 ; 14 1-18 art. 2053.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics14102053
    • Vancouver

      Pérez-Betancourt Y, Zaia R, Evangelista MF, Ribeiro RT, Roncoleta BM, Mathiazzi BI, Carmona-Ribeiro AM. Characterization and differential cytotoxicity of gramicidin nanoparticles combined with cationic polymer or lipid bilayer [Internet]. Pharmaceutics. 2022 ; 14 1-18 art. 2053.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics14102053
  • Fonte: Maccine Design: Methods and Protocols, Resources for Vaccine Development. Unidades: IQ, FCF

    Assuntos: VACINAS, NANOPARTÍCULAS, ADJUVANTES IMUNOLÓGICOS

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARMONA-RIBEIRO, Ana Maria e MATHIAZZI, Beatriz Ideriha e PÉREZ-BETANCOURT, Yunys. Cationic nanostructures as adjuvants for vaccines. Maccine Design: Methods and Protocols, Resources for Vaccine Development. Tradução . New York: Humana, 2022. . . Acesso em: 04 ago. 2024.
    • APA

      Carmona-Ribeiro, A. M., Mathiazzi, B. I., & Pérez-Betancourt, Y. (2022). Cationic nanostructures as adjuvants for vaccines. In Maccine Design: Methods and Protocols, Resources for Vaccine Development. New York: Humana.
    • NLM

      Carmona-Ribeiro AM, Mathiazzi BI, Pérez-Betancourt Y. Cationic nanostructures as adjuvants for vaccines. In: Maccine Design: Methods and Protocols, Resources for Vaccine Development. New York: Humana; 2022. [citado 2024 ago. 04 ]
    • Vancouver

      Carmona-Ribeiro AM, Mathiazzi BI, Pérez-Betancourt Y. Cationic nanostructures as adjuvants for vaccines. In: Maccine Design: Methods and Protocols, Resources for Vaccine Development. New York: Humana; 2022. [citado 2024 ago. 04 ]
  • Fonte: Pharmaceutics. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, LIPÍDEOS, CITOCINAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ-BETANCOURT, Yunys et al. Cationic and biocompatible polymer/lipid nanoparticles as immunoadjuvants. Pharmaceutics, v. 13, p. 1-17 art. 1859, 2021Tradução . . Disponível em: https://doi.org/10.3390/pharmaceutics13111859. Acesso em: 04 ago. 2024.
    • APA

      Pérez-Betancourt, Y., Araújo, P. M., Távora, B. de C. L. F., Pereira, D. R., Faquim-Mauro, E. L., & Carmona-Ribeiro, A. M. (2021). Cationic and biocompatible polymer/lipid nanoparticles as immunoadjuvants. Pharmaceutics, 13, 1-17 art. 1859. doi:10.3390/pharmaceutics13111859
    • NLM

      Pérez-Betancourt Y, Araújo PM, Távora B de CLF, Pereira DR, Faquim-Mauro EL, Carmona-Ribeiro AM. Cationic and biocompatible polymer/lipid nanoparticles as immunoadjuvants [Internet]. Pharmaceutics. 2021 ; 13 1-17 art. 1859.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics13111859
    • Vancouver

      Pérez-Betancourt Y, Araújo PM, Távora B de CLF, Pereira DR, Faquim-Mauro EL, Carmona-Ribeiro AM. Cationic and biocompatible polymer/lipid nanoparticles as immunoadjuvants [Internet]. Pharmaceutics. 2021 ; 13 1-17 art. 1859.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics13111859
  • Fonte: Nanomaterials. Unidade: IQ

    Assuntos: TERAPIA FOTODINÂMICA, NANOPARTÍCULAS, NEOPLASIAS, AZUL DE METILENO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGALHÃES, Jéssica A et al. Co-Encapsulation of methylene blue and PARP-Inhibitor into poly(Lactic-Co-Glycolic Acid) nanoparticles for enhanced PDT of cancer. Nanomaterials, v. 11, p. 1-14 art. 1514, 2021Tradução . . Disponível em: https://doi.org/10.3390/nano11061514. Acesso em: 04 ago. 2024.
    • APA

      Magalhães, J. A., Arruda, D. C., Baptista, M. da S., & Tada, D. B. (2021). Co-Encapsulation of methylene blue and PARP-Inhibitor into poly(Lactic-Co-Glycolic Acid) nanoparticles for enhanced PDT of cancer. Nanomaterials, 11, 1-14 art. 1514. doi:10.3390/nano11061514
    • NLM

      Magalhães JA, Arruda DC, Baptista M da S, Tada DB. Co-Encapsulation of methylene blue and PARP-Inhibitor into poly(Lactic-Co-Glycolic Acid) nanoparticles for enhanced PDT of cancer [Internet]. Nanomaterials. 2021 ; 11 1-14 art. 1514.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/nano11061514
    • Vancouver

      Magalhães JA, Arruda DC, Baptista M da S, Tada DB. Co-Encapsulation of methylene blue and PARP-Inhibitor into poly(Lactic-Co-Glycolic Acid) nanoparticles for enhanced PDT of cancer [Internet]. Nanomaterials. 2021 ; 11 1-14 art. 1514.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/nano11061514
  • Fonte: Polymers. Unidades: IQ, FCF

    Assuntos: NANOPARTÍCULAS, ANTÍGENOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ-BETANCOURT, Yunys et al. Biocompatible lipid polymer cationic nanoparticles for antigen presentation. Polymers, v. 13, p. 1-17 art. 185, 2021Tradução . . Disponível em: https://doi.org/10.3390/polym13020185. Acesso em: 04 ago. 2024.
    • APA

      Pérez-Betancourt, Y., Távora, B. de C. L. F., Mauro, E. L. F., & Carmona-Ribeiro, A. M. (2021). Biocompatible lipid polymer cationic nanoparticles for antigen presentation. Polymers, 13, 1-17 art. 185. doi:10.3390/polym13020185
    • NLM

      Pérez-Betancourt Y, Távora B de CLF, Mauro ELF, Carmona-Ribeiro AM. Biocompatible lipid polymer cationic nanoparticles for antigen presentation [Internet]. Polymers. 2021 ; 13 1-17 art. 185.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/polym13020185
    • Vancouver

      Pérez-Betancourt Y, Távora B de CLF, Mauro ELF, Carmona-Ribeiro AM. Biocompatible lipid polymer cationic nanoparticles for antigen presentation [Internet]. Polymers. 2021 ; 13 1-17 art. 185.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/polym13020185
  • Fonte: Journal of Nanoscience and Nanotechnology. Unidades: FO, IQ

    Assuntos: METOTREXATO, FOSFATOS, NANOPARTÍCULAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEDA, Daiana Kotra et al. Cytotoxicity of methotrexate conjugated to glycerol phosphate modified superparamagnetic iron oxide nanoparticles. Journal of Nanoscience and Nanotechnology, v. 21, n. 3 p. 1451-1461, 2021Tradução . . Disponível em: https://doi.org/10.1166/jnn.2021.19027. Acesso em: 04 ago. 2024.
    • APA

      Deda, D. K., Cardoso, R. M., Kawassaki, R. K., Oliveira, A. R. de, Toma, S. H., Baptista, M. da S., & Araki, K. (2021). Cytotoxicity of methotrexate conjugated to glycerol phosphate modified superparamagnetic iron oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 21( 3 p. 1451-1461). doi:10.1166/jnn.2021.19027
    • NLM

      Deda DK, Cardoso RM, Kawassaki RK, Oliveira AR de, Toma SH, Baptista M da S, Araki K. Cytotoxicity of methotrexate conjugated to glycerol phosphate modified superparamagnetic iron oxide nanoparticles [Internet]. Journal of Nanoscience and Nanotechnology. 2021 ; 21( 3 p. 1451-1461):[citado 2024 ago. 04 ] Available from: https://doi.org/10.1166/jnn.2021.19027
    • Vancouver

      Deda DK, Cardoso RM, Kawassaki RK, Oliveira AR de, Toma SH, Baptista M da S, Araki K. Cytotoxicity of methotrexate conjugated to glycerol phosphate modified superparamagnetic iron oxide nanoparticles [Internet]. Journal of Nanoscience and Nanotechnology. 2021 ; 21( 3 p. 1451-1461):[citado 2024 ago. 04 ] Available from: https://doi.org/10.1166/jnn.2021.19027
  • Fonte: Nanomedicine: Nanotechnology, Biology and Medicine. Unidades: FM, IQ

    Assuntos: NANOPARTÍCULAS, MELANOMA, RADIOTERAPIA, FATOR DE ATIVAÇÃO DE PLAQUETAS, NANOTECNOLOGIA, RNA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAITO, Renata F et al. Simultaneous silencing of lysophosphatidylcholine acyltransferases 1–4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. Nanomedicine: Nanotechnology, Biology and Medicine, v. 36, p. 1-11 art. 102418, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.nano.2021.102418. Acesso em: 04 ago. 2024.
    • APA

      Saito, R. F., Rangel, M. C., Halman, J. R., Chandler, M., Andrade, L. N. de S., Bustos, S. O., et al. (2021). Simultaneous silencing of lysophosphatidylcholine acyltransferases 1–4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. Nanomedicine: Nanotechnology, Biology and Medicine, 36, 1-11 art. 102418. doi:10.1016/j.nano.2021.102418
    • NLM

      Saito RF, Rangel MC, Halman JR, Chandler M, Andrade LN de S, Bustos SO, Furuya TK, Carrasco AGM, Chaves Filho A de B, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R. Simultaneous silencing of lysophosphatidylcholine acyltransferases 1–4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells [Internet]. Nanomedicine: Nanotechnology, Biology and Medicine. 2021 ; 36 1-11 art. 102418.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.nano.2021.102418
    • Vancouver

      Saito RF, Rangel MC, Halman JR, Chandler M, Andrade LN de S, Bustos SO, Furuya TK, Carrasco AGM, Chaves Filho A de B, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R. Simultaneous silencing of lysophosphatidylcholine acyltransferases 1–4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells [Internet]. Nanomedicine: Nanotechnology, Biology and Medicine. 2021 ; 36 1-11 art. 102418.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.nano.2021.102418
  • Fonte: Nanomaterials. Unidade: IQ

    Assuntos: PORFIRINAS, NANOPARTÍCULAS, TERAPIA FOTODINÂMICA, RESISTÊNCIA MICROBIANA ÀS DROGAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HURTADO, Carolina Ramos et al. Diamond nanoparticles porphyrin mthpp conjugate as photosensitizing platform: Cytotoxicity and antibacterial activity. Nanomaterials, v. 11, p. 1-17 art. 1393, 2021Tradução . . Disponível em: https://doi.org/10.3390/nano11061393. Acesso em: 04 ago. 2024.
    • APA

      Hurtado, C. R., Hurtado, G. R., Cena, G. L. de, Queiroz, R. C., Silva, A. V., Diniz, M. F., et al. (2021). Diamond nanoparticles porphyrin mthpp conjugate as photosensitizing platform: Cytotoxicity and antibacterial activity. Nanomaterials, 11, 1-17 art. 1393. doi:10.3390/nano11061393
    • NLM

      Hurtado CR, Hurtado GR, Cena GL de, Queiroz RC, Silva AV, Diniz MF, Santos VR dos, Airoldi VT, Baptista M da S, Tsolekile N, Oluwafemi OS, Conceição K, Tada DB. Diamond nanoparticles porphyrin mthpp conjugate as photosensitizing platform: Cytotoxicity and antibacterial activity [Internet]. Nanomaterials. 2021 ; 11 1-17 art. 1393.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/nano11061393
    • Vancouver

      Hurtado CR, Hurtado GR, Cena GL de, Queiroz RC, Silva AV, Diniz MF, Santos VR dos, Airoldi VT, Baptista M da S, Tsolekile N, Oluwafemi OS, Conceição K, Tada DB. Diamond nanoparticles porphyrin mthpp conjugate as photosensitizing platform: Cytotoxicity and antibacterial activity [Internet]. Nanomaterials. 2021 ; 11 1-17 art. 1393.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/nano11061393
  • Fonte: Colloids and Surfaces B: Biointerfaces. Unidades: FO, IQ

    Assuntos: NANOPARTÍCULAS, QUÍMICA DE SUPERFÍCIE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Roberta Mansini et al. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells. Colloids and Surfaces B: Biointerfaces, v. 186, p. 1-7 art. 110717, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfb.2019.110717. Acesso em: 04 ago. 2024.
    • APA

      Cardoso, R. M., Deda, D. K., Toma, S. H., Baptista, M. da S., & Araki, K. (2020). Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells. Colloids and Surfaces B: Biointerfaces, 186, 1-7 art. 110717. doi:10.1016/j.colsurfb.2019.110717
    • NLM

      Cardoso RM, Deda DK, Toma SH, Baptista M da S, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells [Internet]. Colloids and Surfaces B: Biointerfaces. 2020 ; 186 1-7 art. 110717.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.colsurfb.2019.110717
    • Vancouver

      Cardoso RM, Deda DK, Toma SH, Baptista M da S, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis- conjugated iron oxide nanoparticles by cells [Internet]. Colloids and Surfaces B: Biointerfaces. 2020 ; 186 1-7 art. 110717.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.colsurfb.2019.110717
  • Fonte: Pharmaceutics. Unidades: IQ, FCF

    Assuntos: SURFACTANTES, NANOPARTÍCULAS, METILMETACRILATOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATHIAZZI, Beatriz Ideriha e CARMONA-RIBEIRO, Ana Maria. Hybrid nanoparticles of poly (methyl methacrylate) and antimicrobial quaternary ammonium surfactants. Pharmaceutics, v. 12, n. 4, p. 1-20 art. 340, 2020Tradução . . Disponível em: https://doi.org/10.3390/pharmaceutics12040340. Acesso em: 04 ago. 2024.
    • APA

      Mathiazzi, B. I., & Carmona-Ribeiro, A. M. (2020). Hybrid nanoparticles of poly (methyl methacrylate) and antimicrobial quaternary ammonium surfactants. Pharmaceutics, 12( 4), 1-20 art. 340. doi:10.3390/pharmaceutics12040340
    • NLM

      Mathiazzi BI, Carmona-Ribeiro AM. Hybrid nanoparticles of poly (methyl methacrylate) and antimicrobial quaternary ammonium surfactants [Internet]. Pharmaceutics. 2020 ; 12( 4): 1-20 art. 340.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics12040340
    • Vancouver

      Mathiazzi BI, Carmona-Ribeiro AM. Hybrid nanoparticles of poly (methyl methacrylate) and antimicrobial quaternary ammonium surfactants [Internet]. Pharmaceutics. 2020 ; 12( 4): 1-20 art. 340.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/pharmaceutics12040340
  • Fonte: Resumos. Nome do evento: Simpósio Internacional de Iniciação Científica e Tecnológica da Universidade de São Paulo - SIICUSP. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, BIOFÍSICA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Péricles Marques e CARMONA-RIBEIRO, Ana Maria. Nanopartículas e seus filmes antimicrobianos. 2020, Anais.. São Paulo: Universidade de São Paulo - USP, 2020. Disponível em: https://uspdigital.usp.br/siicusp/siicpublicacao.jsp?codmnu=7210. Acesso em: 04 ago. 2024.
    • APA

      Araújo, P. M., & Carmona-Ribeiro, A. M. (2020). Nanopartículas e seus filmes antimicrobianos. In Resumos. São Paulo: Universidade de São Paulo - USP. Recuperado de https://uspdigital.usp.br/siicusp/siicpublicacao.jsp?codmnu=7210
    • NLM

      Araújo PM, Carmona-Ribeiro AM. Nanopartículas e seus filmes antimicrobianos [Internet]. Resumos. 2020 ;[citado 2024 ago. 04 ] Available from: https://uspdigital.usp.br/siicusp/siicpublicacao.jsp?codmnu=7210
    • Vancouver

      Araújo PM, Carmona-Ribeiro AM. Nanopartículas e seus filmes antimicrobianos [Internet]. Resumos. 2020 ;[citado 2024 ago. 04 ] Available from: https://uspdigital.usp.br/siicusp/siicpublicacao.jsp?codmnu=7210
  • Fonte: Biomimetics. Unidade: IQ

    Assuntos: VACINAS, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARMONA-RIBEIRO, Ana Maria e PÉREZ-BETANCOURT, Yunys. Cationic nanostructures for vaccines design. Biomimetics, v. 5, p. 1-47 art. 32, 2020Tradução . . Disponível em: https://doi.org/10.3390/biomimetics5030032. Acesso em: 04 ago. 2024.
    • APA

      Carmona-Ribeiro, A. M., & Pérez-Betancourt, Y. (2020). Cationic nanostructures for vaccines design. Biomimetics, 5, 1-47 art. 32. doi:10.3390/biomimetics5030032
    • NLM

      Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic nanostructures for vaccines design [Internet]. Biomimetics. 2020 ; 5 1-47 art. 32.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/biomimetics5030032
    • Vancouver

      Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic nanostructures for vaccines design [Internet]. Biomimetics. 2020 ; 5 1-47 art. 32.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/biomimetics5030032
  • Fonte: Vaccines. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, ADJUVANTES IMUNOLÓGICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ-BETANCOURT, Yunys et al. Simple nanoparticles from the assembly of cationic polymer and antigen as immunoadjuvants. Vaccines, v. 8, n. 1, p. 1-13 art. 105, 2020Tradução . . Disponível em: https://doi.org/10.3390/vaccines8010105. Acesso em: 04 ago. 2024.
    • APA

      Pérez-Betancourt, Y., Távora, B. de C. L. F., Colombini, M., Faquim-Mauro, E. L., & Carmona-Ribeiro, A. M. (2020). Simple nanoparticles from the assembly of cationic polymer and antigen as immunoadjuvants. Vaccines, 8( 1), 1-13 art. 105. doi:10.3390/vaccines8010105
    • NLM

      Pérez-Betancourt Y, Távora B de CLF, Colombini M, Faquim-Mauro EL, Carmona-Ribeiro AM. Simple nanoparticles from the assembly of cationic polymer and antigen as immunoadjuvants [Internet]. Vaccines. 2020 ; 8( 1): 1-13 art. 105.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/vaccines8010105
    • Vancouver

      Pérez-Betancourt Y, Távora B de CLF, Colombini M, Faquim-Mauro EL, Carmona-Ribeiro AM. Simple nanoparticles from the assembly of cationic polymer and antigen as immunoadjuvants [Internet]. Vaccines. 2020 ; 8( 1): 1-13 art. 105.[citado 2024 ago. 04 ] Available from: https://doi.org/10.3390/vaccines8010105
  • Fonte: Nanotechnology. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGALHÃES, Jéssica A et al. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer. Nanotechnology, v. 31, p. 1-12 art. 095102, 2020Tradução . . Disponível em: https://doi.org/10.1088/1361-6528/ab55c0. Acesso em: 04 ago. 2024.
    • APA

      Magalhães, J. A., Fernandes, A. U., Junqueira, H. C., Nunes, B. C., Cursino, T. A. F., Formaggio, D. M. D., et al. (2020). Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer. Nanotechnology, 31, 1-12 art. 095102. doi:10.1088/1361-6528/ab55c0
    • NLM

      Magalhães JA, Fernandes AU, Junqueira HC, Nunes BC, Cursino TAF, Formaggio DMD, Baptista M da S, Tada DB. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer [Internet]. Nanotechnology. 2020 ; 31 1-12 art. 095102.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1088/1361-6528/ab55c0
    • Vancouver

      Magalhães JA, Fernandes AU, Junqueira HC, Nunes BC, Cursino TAF, Formaggio DMD, Baptista M da S, Tada DB. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer [Internet]. Nanotechnology. 2020 ; 31 1-12 art. 095102.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1088/1361-6528/ab55c0
  • Fonte: Biophysical Chemistry. Unidades: IF, IQ

    Assuntos: FOTOBIOLOGIA, FOTOQUÍMICA, OXIDAÇÃO, LIPÍDEOS DA MEMBRANA, BIOFÍSICA, BIOQUÍMICA CELULAR, NANOPARTÍCULAS, PERMEABILIDADE DA MEMBRANA CELULAR, MEMBRANAS CELULARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TSUBONE, Tayana Mazin e BAPTISTA, Mauricio da Silva e ITRI, Rosangela. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophysical Chemistry, v. 254, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.bpc.2019.106263. Acesso em: 04 ago. 2024.
    • APA

      Tsubone, T. M., Baptista, M. da S., & Itri, R. (2019). Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophysical Chemistry, 254. doi:10.1016/j.bpc.2019.106263
    • NLM

      Tsubone TM, Baptista M da S, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation [Internet]. Biophysical Chemistry. 2019 ; 254[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.bpc.2019.106263
    • Vancouver

      Tsubone TM, Baptista M da S, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation [Internet]. Biophysical Chemistry. 2019 ; 254[citado 2024 ago. 04 ] Available from: https://doi.org/10.1016/j.bpc.2019.106263
  • Fonte: Journal of Nanoscience and Nanotechnology. Unidade: IQ

    Assuntos: NANOPARTÍCULAS, ANTICORPOS, PEPTÍDEOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HIGA, Akemi M et al. Peptide-conjugated silver nanoparticle for autoantibody recognition. Journal of Nanoscience and Nanotechnology, v. 19, n. 12, p. 7564-7573, 2019Tradução . . Disponível em: https://doi.org/10.1166/jnn.2019.16734. Acesso em: 04 ago. 2024.
    • APA

      Higa, A. M., Mambrini, G. P., Ierich, J. C. M., Garcia, P. S., Scramin, J. A., Peroni, L. A., et al. (2019). Peptide-conjugated silver nanoparticle for autoantibody recognition. Journal of Nanoscience and Nanotechnology, 19( 12), 7564-7573. doi:10.1166/jnn.2019.16734
    • NLM

      Higa AM, Mambrini GP, Ierich JCM, Garcia PS, Scramin JA, Peroni LA, Shinagawa NMO, Machini MT, Strixino FT, Leite FL. Peptide-conjugated silver nanoparticle for autoantibody recognition [Internet]. Journal of Nanoscience and Nanotechnology. 2019 ; 19( 12): 7564-7573.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1166/jnn.2019.16734
    • Vancouver

      Higa AM, Mambrini GP, Ierich JCM, Garcia PS, Scramin JA, Peroni LA, Shinagawa NMO, Machini MT, Strixino FT, Leite FL. Peptide-conjugated silver nanoparticle for autoantibody recognition [Internet]. Journal of Nanoscience and Nanotechnology. 2019 ; 19( 12): 7564-7573.[citado 2024 ago. 04 ] Available from: https://doi.org/10.1166/jnn.2019.16734
  • Fonte: Resumos. Nome do evento: Simpósio Internacional de Iniciação Científica da Universidade de São Paulo - SIICUSP. Unidade: IQ

    Assuntos: QUIMIOTERÁPICOS, NANOPARTÍCULAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIETRICH, Natasha et al. Estudo da toxicidade e incorporação celular do quimioterápico metotrexato conjugado a nanopartículas superparamagnéticas. 2019, Anais.. São Paulo: Pró-Reitoria de Pesquisa/USP, 2019. Disponível em: https://uspdigital.usp.br/siicusp/siicPublicacao.jsp?codmnu=7210. Acesso em: 04 ago. 2024.
    • APA

      Dietrich, N., Cardoso, R. M., Baptista, M. da S., Araki, K., & Nogueira, D. K. D. (2019). Estudo da toxicidade e incorporação celular do quimioterápico metotrexato conjugado a nanopartículas superparamagnéticas. In Resumos. São Paulo: Pró-Reitoria de Pesquisa/USP. Recuperado de https://uspdigital.usp.br/siicusp/siicPublicacao.jsp?codmnu=7210
    • NLM

      Dietrich N, Cardoso RM, Baptista M da S, Araki K, Nogueira DKD. Estudo da toxicidade e incorporação celular do quimioterápico metotrexato conjugado a nanopartículas superparamagnéticas [Internet]. Resumos. 2019 ;[citado 2024 ago. 04 ] Available from: https://uspdigital.usp.br/siicusp/siicPublicacao.jsp?codmnu=7210
    • Vancouver

      Dietrich N, Cardoso RM, Baptista M da S, Araki K, Nogueira DKD. Estudo da toxicidade e incorporação celular do quimioterápico metotrexato conjugado a nanopartículas superparamagnéticas [Internet]. Resumos. 2019 ;[citado 2024 ago. 04 ] Available from: https://uspdigital.usp.br/siicusp/siicPublicacao.jsp?codmnu=7210

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024