Filtros : " IFSC777" "Reino Unido" Removidos: "Reabilitação Oral" "Sterman, Raquel González" "Suiça" Limpar

Filtros



Refine with date range


  • Source: Journal of Materials Chemistry B. Unidades: IFSC, EESC

    Subjects: NANOCIÊNCIA, NANOPARTÍCULAS, FOTOLUMINESCÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Thales Rafael et al. Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications. Journal of Materials Chemistry B, v. 12, n. 20, p. 4945-4961 + supplementary information, 2024Tradução . . Disponível em: https://doi.org/10.1039/D3TB02915H. Acesso em: 03 ago. 2024.
    • APA

      Machado, T. R., Zanardo, C. E., Vilela, R. R. do C., Miranda, R. R., Moreno, N. S., Leite, C. M., et al. (2024). Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications. Journal of Materials Chemistry B, 12( 20), 4945-4961 + supplementary information. doi:10.1039/D3TB02915H
    • NLM

      Machado TR, Zanardo CE, Vilela RR do C, Miranda RR, Moreno NS, Leite CM, Longo E, Zucolotto V. Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications [Internet]. Journal of Materials Chemistry B. 2024 ; 12( 20): 4945-4961 + supplementary information.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/D3TB02915H
    • Vancouver

      Machado TR, Zanardo CE, Vilela RR do C, Miranda RR, Moreno NS, Leite CM, Longo E, Zucolotto V. Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications [Internet]. Journal of Materials Chemistry B. 2024 ; 12( 20): 4945-4961 + supplementary information.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/D3TB02915H
  • Source: Journal of Materials Chemistry B. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, ANTINEOPLÁSICOS, AGENTE TÓXICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTONIO, Luana Corsi et al. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. Journal of Materials Chemistry B, v. 10, n. 40, p. 8282-8294 + supplementary information: S1-S8, 2022Tradução . . Disponível em: https://doi.org/10.1039/d2tb01296k. Acesso em: 03 ago. 2024.
    • APA

      Antonio, L. C., Ribovski, L., Lins, P. M. P., & Zucolotto, V. (2022). The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. Journal of Materials Chemistry B, 10( 40), 8282-8294 + supplementary information: S1-S8. doi:10.1039/d2tb01296k
    • NLM

      Antonio LC, Ribovski L, Lins PMP, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage [Internet]. Journal of Materials Chemistry B. 2022 ; 10( 40): 8282-8294 + supplementary information: S1-S8.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d2tb01296k
    • Vancouver

      Antonio LC, Ribovski L, Lins PMP, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage [Internet]. Journal of Materials Chemistry B. 2022 ; 10( 40): 8282-8294 + supplementary information: S1-S8.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d2tb01296k
  • Source: Polymers for Advanced Technologies. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), BIOMEDICINA, CÉLULAS MUSCULARES, MATERIAIS NANOESTRUTURADOS, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UEHARA, Thiers Massami et al. Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polymers for Advanced Technologies, v. 33, n. 2, p. 591-600, 2022Tradução . . Disponível em: https://doi.org/10.1002/pat.5541. Acesso em: 03 ago. 2024.
    • APA

      Uehara, T. M., Migliorini, F. L., Facure, M. H. M., Palma Filho, N. B., Miranda, P. B., Zucolotto, V., & Correa, D. S. (2022). Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polymers for Advanced Technologies, 33( 2), 591-600. doi:10.1002/pat.5541
    • NLM

      Uehara TM, Migliorini FL, Facure MHM, Palma Filho NB, Miranda PB, Zucolotto V, Correa DS. Nanostructured scaffolds containing graphene oxide for nanomedicine applications [Internet]. Polymers for Advanced Technologies. 2022 ; 33( 2): 591-600.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/pat.5541
    • Vancouver

      Uehara TM, Migliorini FL, Facure MHM, Palma Filho NB, Miranda PB, Zucolotto V, Correa DS. Nanostructured scaffolds containing graphene oxide for nanomedicine applications [Internet]. Polymers for Advanced Technologies. 2022 ; 33( 2): 591-600.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/pat.5541
  • Source: Materials Advances. Unidade: IFSC

    Subjects: NEOPLASIAS, BIOMEDICINA, POLÍMEROS (MATERIAIS), NANOTECNOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVÃO, Bianca Martins et al. Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells. Materials Advances, v. 2, n. 15, p. 5224-5235, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1ma00225b. Acesso em: 03 ago. 2024.
    • APA

      Estevão, B. M., Comparetti, E. J., Rissi, N. C., & Zucolotto, V. (2021). Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells. Materials Advances, 2( 15), 5224-5235. doi:10.1039/d1ma00225b
    • NLM

      Estevão BM, Comparetti EJ, Rissi NC, Zucolotto V. Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells [Internet]. Materials Advances. 2021 ; 2( 15): 5224-5235.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d1ma00225b
    • Vancouver

      Estevão BM, Comparetti EJ, Rissi NC, Zucolotto V. Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells [Internet]. Materials Advances. 2021 ; 2( 15): 5224-5235.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d1ma00225b
  • Source: Polymers for Advanced Technologies. Unidade: IFSC

    Subjects: MATERIAIS NANOESTRUTURADOS, SISTEMA MUSCULOSQUELÉTICO, MATERIAIS BIOMÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UEHARA, Thiers Massami et al. Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold. Polymers for Advanced Technologies, v. 31, n. 6, p. 1437-1443, 2020Tradução . . Disponível em: https://doi.org/10.1002/pat.4874. Acesso em: 03 ago. 2024.
    • APA

      Uehara, T. M., Paino, I. M. M., Santos, F. A. dos, Scagion, V. P., Correa, D. S., & Zucolotto, V. (2020). Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold. Polymers for Advanced Technologies, 31( 6), 1437-1443. doi:10.1002/pat.4874
    • NLM

      Uehara TM, Paino IMM, Santos FA dos, Scagion VP, Correa DS, Zucolotto V. Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold [Internet]. Polymers for Advanced Technologies. 2020 ; 31( 6): 1437-1443.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/pat.4874
    • Vancouver

      Uehara TM, Paino IMM, Santos FA dos, Scagion VP, Correa DS, Zucolotto V. Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold [Internet]. Polymers for Advanced Technologies. 2020 ; 31( 6): 1437-1443.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/pat.4874
  • Source: Soft Matter. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), BIOMEDICINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UEHARA, Thiers Massami et al. Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation. Soft Matter, v. 16, n. 24, p. 5711-5717, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0sm00256a. Acesso em: 03 ago. 2024.
    • APA

      Uehara, T. M., Bernardi, J. C., Miranda, P. B., & Zucolotto, V. (2020). Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation. Soft Matter, 16( 24), 5711-5717. doi:10.1039/d0sm00256a
    • NLM

      Uehara TM, Bernardi JC, Miranda PB, Zucolotto V. Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation [Internet]. Soft Matter. 2020 ; 16( 24): 5711-5717.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d0sm00256a
    • Vancouver

      Uehara TM, Bernardi JC, Miranda PB, Zucolotto V. Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation [Internet]. Soft Matter. 2020 ; 16( 24): 5711-5717.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d0sm00256a
  • Source: Materials Advances. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, BIOMEDICINA, NEOPLASIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMPARETTI, Edson José et al. Cancer cell membrane-derived nanoparticles improve the activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate immunoregulatory properties on professional antigen-presenting cells. Materials Advances, v. 1, n. 6, p. 1775-1787, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0ma00367k. Acesso em: 03 ago. 2024.
    • APA

      Comparetti, E. J., Lins, P. M. P., Quitiba, J. V. B., & Zucolotto, V. (2020). Cancer cell membrane-derived nanoparticles improve the activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate immunoregulatory properties on professional antigen-presenting cells. Materials Advances, 1( 6), 1775-1787. doi:10.1039/d0ma00367k
    • NLM

      Comparetti EJ, Lins PMP, Quitiba JVB, Zucolotto V. Cancer cell membrane-derived nanoparticles improve the activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate immunoregulatory properties on professional antigen-presenting cells [Internet]. Materials Advances. 2020 ; 1( 6): 1775-1787.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d0ma00367k
    • Vancouver

      Comparetti EJ, Lins PMP, Quitiba JVB, Zucolotto V. Cancer cell membrane-derived nanoparticles improve the activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate immunoregulatory properties on professional antigen-presenting cells [Internet]. Materials Advances. 2020 ; 1( 6): 1775-1787.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/d0ma00367k
  • Source: Analytical Methods. Unidade: IFSC

    Subjects: DENGUE (ESTUDO), PROTEÍNAS (ESTUDO), SENSOR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Nirton C. S. et al. Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system. Analytical Methods, v. No 2014, n. 22, p. 8882-8885, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4ay01803f. Acesso em: 03 ago. 2024.
    • APA

      Vieira, N. C. S., Figueiredo, A., Santos, J. F., Aoki, S. M., Guimarães, F. E. G., & Zucolotto, V. (2014). Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system. Analytical Methods, No 2014( 22), 8882-8885. doi:10.1039/c4ay01803f
    • NLM

      Vieira NCS, Figueiredo A, Santos JF, Aoki SM, Guimarães FEG, Zucolotto V. Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system [Internet]. Analytical Methods. 2014 ; No 2014( 22): 8882-8885.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/c4ay01803f
    • Vancouver

      Vieira NCS, Figueiredo A, Santos JF, Aoki SM, Guimarães FEG, Zucolotto V. Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system [Internet]. Analytical Methods. 2014 ; No 2014( 22): 8882-8885.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1039/c4ay01803f
  • Source: Nanotoxicology. Unidades: IFSC, IQSC

    Subjects: SENSOR (DESENVOLVIMENTO), FILMES FINOS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANCINO, Juliana et al. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology, v. 7, n. 1, p. 61-70, 2013Tradução . . Disponível em: https://doi.org/10.3109/17435390.2011.629748. Acesso em: 03 ago. 2024.
    • APA

      Cancino, J., Nobre, T. M., Oliveira Junior, O. N. de, Machado, S. A. S., & Zucolotto, V. (2013). A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology, 7( 1), 61-70. doi:10.3109/17435390.2011.629748
    • NLM

      Cancino J, Nobre TM, Oliveira Junior ON de, Machado SAS, Zucolotto V. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models [Internet]. Nanotoxicology. 2013 ; 7( 1): 61-70.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3109/17435390.2011.629748
    • Vancouver

      Cancino J, Nobre TM, Oliveira Junior ON de, Machado SAS, Zucolotto V. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models [Internet]. Nanotoxicology. 2013 ; 7( 1): 61-70.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3109/17435390.2011.629748

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024