Filtros : "Tomita, Artur Hideyuki" "Financiamento NSERC" Removidos: "kan" "1970" "1981" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMÁN, O. et al. Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, v. 305, n. artigo 107872, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107872. Acesso em: 09 nov. 2024.
    • APA

      Guzmán, O., Hrušák, M., Rodrigues, V. de O., Todorcevic, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, 305( artigo 107872), 1-24. doi:10.1016/j.topol.2021.107872
    • NLM

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
    • Vancouver

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SZEPTYCKI, Paul J e TOMITA, Artur Hideyuki. HFD groups in the Solovay model. Topology and its Applications, v. 156, n. 10, p. 1807-1810, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2009.03.008. Acesso em: 09 nov. 2024.
    • APA

      Szeptycki, P. J., & Tomita, A. H. (2009). HFD groups in the Solovay model. Topology and its Applications, 156( 10), 1807-1810. doi:10.1016/j.topol.2009.03.008
    • NLM

      Szeptycki PJ, Tomita AH. HFD groups in the Solovay model [Internet]. Topology and its Applications. 2009 ; 156( 10): 1807-1810.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2009.03.008
    • Vancouver

      Szeptycki PJ, Tomita AH. HFD groups in the Solovay model [Internet]. Topology and its Applications. 2009 ; 156( 10): 1807-1810.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2009.03.008
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNÁNDEZ-HERNÁNDEZ, Fernando et al. Realcompactness in maximal and submaximal spaces. Topology and its Applications, v. 154, n. 16, p. 2997-3004, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2007.06.013. Acesso em: 09 nov. 2024.
    • APA

      Hernández-Hernández, F., Pavlov, O., Szeptycki, P. J., & Tomita, A. H. (2007). Realcompactness in maximal and submaximal spaces. Topology and its Applications, 154( 16), 2997-3004. doi:10.1016/j.topol.2007.06.013
    • NLM

      Hernández-Hernández F, Pavlov O, Szeptycki PJ, Tomita AH. Realcompactness in maximal and submaximal spaces [Internet]. Topology and its Applications. 2007 ; 154( 16): 2997-3004.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2007.06.013
    • Vancouver

      Hernández-Hernández F, Pavlov O, Szeptycki PJ, Tomita AH. Realcompactness in maximal and submaximal spaces [Internet]. Topology and its Applications. 2007 ; 154( 16): 2997-3004.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2007.06.013
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e WATSON, Stephen. Ultraproducts, p-limits and antichains on the Comfort group order. Topology and its Applications, v. 143, n. 1-3, p. 147-157, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2004.02.012. Acesso em: 09 nov. 2024.
    • APA

      Tomita, A. H., & Watson, S. (2004). Ultraproducts, p-limits and antichains on the Comfort group order. Topology and its Applications, 143( 1-3), 147-157. doi:10.1016/j.topol.2004.02.012
    • NLM

      Tomita AH, Watson S. Ultraproducts, p-limits and antichains on the Comfort group order [Internet]. Topology and its Applications. 2004 ; 143( 1-3): 147-157.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2004.02.012
    • Vancouver

      Tomita AH, Watson S. Ultraproducts, p-limits and antichains on the Comfort group order [Internet]. Topology and its Applications. 2004 ; 143( 1-3): 147-157.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2004.02.012

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024