Filtros : "Universidade Federal do Ceará (UFC)" "ICMC-SMA" Removidos: " GRU020" "mc" "Multiplos idiomas" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Alexandre e RUAS, Maria Aparecida Soares. Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane. Proceedings of the American Mathematical Society, v. 141, n. 4, p. 1125-1133, 2013Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2012-11388-7. Acesso em: 07 nov. 2024.
    • APA

      Fernandes, A., & Ruas, M. A. S. (2013). Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane. Proceedings of the American Mathematical Society, 141( 4), 1125-1133. doi:10.1090/S0002-9939-2012-11388-7
    • NLM

      Fernandes A, Ruas MAS. Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 4): 1125-1133.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11388-7
    • Vancouver

      Fernandes A, Ruas MAS. Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 4): 1125-1133.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11388-7
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRBRAIR, Lev et al. K-Bi-Lipschultz equivalence of real function-germs. Proceedings of the American Mathematical Society, v. 135, n. 4, p. 1089-1095, 2007Tradução . . Disponível em: http://www.ams.org/proc/2007-135-04/S0002-9939-06-08566-2/S0002-9939-06-08566-2.pdf. Acesso em: 07 nov. 2024.
    • APA

      Birbrair, L., Costa, J., Fernandes, A., & Ruas, M. A. S. (2007). K-Bi-Lipschultz equivalence of real function-germs. Proceedings of the American Mathematical Society, 135( 4), 1089-1095. Recuperado de http://www.ams.org/proc/2007-135-04/S0002-9939-06-08566-2/S0002-9939-06-08566-2.pdf
    • NLM

      Birbrair L, Costa J, Fernandes A, Ruas MAS. K-Bi-Lipschultz equivalence of real function-germs [Internet]. Proceedings of the American Mathematical Society. 2007 ; 135( 4): 1089-1095.[citado 2024 nov. 07 ] Available from: http://www.ams.org/proc/2007-135-04/S0002-9939-06-08566-2/S0002-9939-06-08566-2.pdf
    • Vancouver

      Birbrair L, Costa J, Fernandes A, Ruas MAS. K-Bi-Lipschultz equivalence of real function-germs [Internet]. Proceedings of the American Mathematical Society. 2007 ; 135( 4): 1089-1095.[citado 2024 nov. 07 ] Available from: http://www.ams.org/proc/2007-135-04/S0002-9939-06-08566-2/S0002-9939-06-08566-2.pdf
  • Source: Rocky Mountain Journal of Mathematics. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, A e SOARES, C. Humberto e ARAÚJO DOS SANTOS, Raimundo Nonato. Topological triviality of family of functions and sets. Rocky Mountain Journal of Mathematics, v. 36, n. 4, p. 1235-1247, 2006Tradução . . Disponível em: https://doi.org/10.1216/rmjm/1181069414. Acesso em: 07 nov. 2024.
    • APA

      Fernandes, A., Soares, C. H., & Araújo dos Santos, R. N. (2006). Topological triviality of family of functions and sets. Rocky Mountain Journal of Mathematics, 36( 4), 1235-1247. doi:10.1216/rmjm/1181069414
    • NLM

      Fernandes A, Soares CH, Araújo dos Santos RN. Topological triviality of family of functions and sets [Internet]. Rocky Mountain Journal of Mathematics. 2006 ; 36( 4): 1235-1247.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1216/rmjm/1181069414
    • Vancouver

      Fernandes A, Soares CH, Araújo dos Santos RN. Topological triviality of family of functions and sets [Internet]. Rocky Mountain Journal of Mathematics. 2006 ; 36( 4): 1235-1247.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1216/rmjm/1181069414
  • Source: Glasgow Mathematical Journal Trust. Unidade: ICMC

    Assunto: SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Alexandre Cesar Gurgel e RUAS, Maria Aparecida Soares. Bilipschitz determinacy of quasihomogeneous germs. Glasgow Mathematical Journal Trust, v. 46, p. 77-82, 2004Tradução . . Acesso em: 07 nov. 2024.
    • APA

      Fernandes, A. C. G., & Ruas, M. A. S. (2004). Bilipschitz determinacy of quasihomogeneous germs. Glasgow Mathematical Journal Trust, 46, 77-82.
    • NLM

      Fernandes ACG, Ruas MAS. Bilipschitz determinacy of quasihomogeneous germs. Glasgow Mathematical Journal Trust. 2004 ; 46 77-82.[citado 2024 nov. 07 ]
    • Vancouver

      Fernandes ACG, Ruas MAS. Bilipschitz determinacy of quasihomogeneous germs. Glasgow Mathematical Journal Trust. 2004 ; 46 77-82.[citado 2024 nov. 07 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FOLHEAÇÕES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Alexandre Cesar Gurgel e VIDALON, Carlos Teobaldo Gutierrez e MONTOYA, Roland Rabanal. Global asymptotic stability for differentiable vector fields of R2. Journal of Differential Equations, v. 206, n. 2, p. 470-482, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.04.015. Acesso em: 07 nov. 2024.
    • APA

      Fernandes, A. C. G., Vidalon, C. T. G., & Montoya, R. R. (2004). Global asymptotic stability for differentiable vector fields of R2. Journal of Differential Equations, 206( 2), 470-482. doi:10.1016/j.jde.2004.04.015
    • NLM

      Fernandes ACG, Vidalon CTG, Montoya RR. Global asymptotic stability for differentiable vector fields of R2 [Internet]. Journal of Differential Equations. 2004 ; 206( 2): 470-482.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2004.04.015
    • Vancouver

      Fernandes ACG, Vidalon CTG, Montoya RR. Global asymptotic stability for differentiable vector fields of R2 [Internet]. Journal of Differential Equations. 2004 ; 206( 2): 470-482.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2004.04.015

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024