Filtros : "Bélgica" "Financiado pela Fédération Wallonie-Bruxelles" Removidos: "kyu" "ABCD" "PUSP-P" Limpar

Filtros



Refine with date range


  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, v. 370, n. 10, p. 7081-7127, 2018Tradução . . Disponível em: https://doi.org/10.1090/tran/7231. Acesso em: 13 nov. 2024.
    • APA

      Bonheure, D., Földes, J., Moreira dos Santos, E., Saldaña, A., & Tavares, H. (2018). Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, 370( 10), 7081-7127. doi:10.1090/tran/7231
    • NLM

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1090/tran/7231
    • Vancouver

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1090/tran/7231
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM Journal on Mathematical Analysis, v. 50, n. 5, p. 5027-5071, 2018Tradução . . Disponível em: https://doi.org/10.1137/17M1154138. Acesso em: 13 nov. 2024.
    • APA

      Bonheure, D., Casteras, J. -B., Moreira dos Santos, E., & Nascimento, R. (2018). Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM Journal on Mathematical Analysis, 50( 5), 5027-5071. doi:10.1137/17M1154138
    • NLM

      Bonheure D, Casteras J-B, Moreira dos Santos E, Nascimento R. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation [Internet]. SIAM Journal on Mathematical Analysis. 2018 ; 50( 5): 5027-5071.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1137/17M1154138
    • Vancouver

      Bonheure D, Casteras J-B, Moreira dos Santos E, Nascimento R. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation [Internet]. SIAM Journal on Mathematical Analysis. 2018 ; 50( 5): 5027-5071.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1137/17M1154138

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024