Filtros : "Ucrânia" "2015" Removidos: "IFSC224" "Silva, Ailton Amélio da" "Springer" Limpar

Filtros



Refine with date range


  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e KIRICHENKO, Vladimir V e PLKAKHOTNYK, M. Quivers of 3 × 3-exponent matrices. Algebra and Discrete Mathematics, v. 20, n. 1, p. 55-68, 2015Tradução . . Disponível em: http://adm.luguniv.edu.ua/downloads/issues/2015/N3/adm-n3%282015%29-5.pdf. Acesso em: 13 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V. V., & Plkakhotnyk, M. (2015). Quivers of 3 × 3-exponent matrices. Algebra and Discrete Mathematics, 20( 1), 55-68. Recuperado de http://adm.luguniv.edu.ua/downloads/issues/2015/N3/adm-n3%282015%29-5.pdf
    • NLM

      Dokuchaev M, Kirichenko VV, Plkakhotnyk M. Quivers of 3 × 3-exponent matrices [Internet]. Algebra and Discrete Mathematics. 2015 ; 20( 1): 55-68.[citado 2024 nov. 13 ] Available from: http://adm.luguniv.edu.ua/downloads/issues/2015/N3/adm-n3%282015%29-5.pdf
    • Vancouver

      Dokuchaev M, Kirichenko VV, Plkakhotnyk M. Quivers of 3 × 3-exponent matrices [Internet]. Algebra and Discrete Mathematics. 2015 ; 20( 1): 55-68.[citado 2024 nov. 13 ] Available from: http://adm.luguniv.edu.ua/downloads/issues/2015/N3/adm-n3%282015%29-5.pdf
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor S e MENEGATTO, Valdir Antônio. Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 11, p. 1-13, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.014. Acesso em: 13 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2015). Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 11, 1-13. doi:10.3842/SIGMA.2015.014
    • NLM

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
    • Vancouver

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
  • Source: Symmetry, Integrability and Geometry : Methods and Applications. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch et al. Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, v. 11, p. 1-16, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.093. Acesso em: 13 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., & Munthe-Kaas, H. Z. (2015). Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, 11, 1-16. doi:10.3842/SIGMA.2015.093
    • NLM

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
    • Vancouver

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
  • Source: Proceedings of the Shevchenko Scientific Society Medicine. Unidade: ICB

    Subjects: FARMACOLOGIA, MUCOSA GÁSTRICA, ESÔFAGO, ANTI-INFLAMATÓRIOS NÃO ESTEROIDES, ESTÔMAGO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WALLACE, John L. et al. Influence of hydrogen sulfide-releasing aspirin on mucosal integrity of esophageal and gastric mucosa. Proceedings of the Shevchenko Scientific Society Medicine, v. 43, p. 63-74, 2015Tradução . . Acesso em: 13 nov. 2024.
    • APA

      Wallace, J. L., Pshyk-Titko, I., Muscará, M. N., Bula, N., Pavlovsky, Y., Gavriluk, E., & Zayachkivska, O. (2015). Influence of hydrogen sulfide-releasing aspirin on mucosal integrity of esophageal and gastric mucosa. Proceedings of the Shevchenko Scientific Society Medicine, 43, 63-74.
    • NLM

      Wallace JL, Pshyk-Titko I, Muscará MN, Bula N, Pavlovsky Y, Gavriluk E, Zayachkivska O. Influence of hydrogen sulfide-releasing aspirin on mucosal integrity of esophageal and gastric mucosa. Proceedings of the Shevchenko Scientific Society Medicine. 2015 ; 43 63-74.[citado 2024 nov. 13 ]
    • Vancouver

      Wallace JL, Pshyk-Titko I, Muscará MN, Bula N, Pavlovsky Y, Gavriluk E, Zayachkivska O. Influence of hydrogen sulfide-releasing aspirin on mucosal integrity of esophageal and gastric mucosa. Proceedings of the Shevchenko Scientific Society Medicine. 2015 ; 43 63-74.[citado 2024 nov. 13 ]
  • Source: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. Irreducible Generic Gelfand-Tsetlin Modules of gl(n). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), v. 11, p. [13 ], 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.018. Acesso em: 13 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2015). Irreducible Generic Gelfand-Tsetlin Modules of gl(n). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 11, [13 ]. doi:10.3842/SIGMA.2015.018
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. Irreducible Generic Gelfand-Tsetlin Modules of gl(n) [Internet]. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2015 ; 11 [13 ].[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.018
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. Irreducible Generic Gelfand-Tsetlin Modules of gl(n) [Internet]. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2015 ; 11 [13 ].[citado 2024 nov. 13 ] Available from: https://doi.org/10.3842/SIGMA.2015.018

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024