Filtros : "Itália" "ICMC-SMA" "Holanda" Removidos: "IF-FEP" "Brazilian Symposium on Glasses and Related Materials" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 13 nov. 2024.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Source: Annales de l'Institut Henri Poincaré – Analyse non linéaire. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson e NORNBERG, Gabrielle e SOAVE, Nicola. On unique continuation principles for some elliptic systems. Annales de l'Institut Henri Poincaré – Analyse non linéaire, v. 38, n. 5, p. Se-Oct. 2021, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.anihpc.2020.12.001. Acesso em: 13 nov. 2024.
    • APA

      Moreira dos Santos, E., Nornberg, G., & Soave, N. (2021). On unique continuation principles for some elliptic systems. Annales de l'Institut Henri Poincaré – Analyse non linéaire, 38( 5), Se-Oct. 2021. doi:10.1016/j.anihpc.2020.12.001
    • NLM

      Moreira dos Santos E, Nornberg G, Soave N. On unique continuation principles for some elliptic systems [Internet]. Annales de l'Institut Henri Poincaré – Analyse non linéaire. 2021 ; 38( 5): Se-Oct. 2021.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.anihpc.2020.12.001
    • Vancouver

      Moreira dos Santos E, Nornberg G, Soave N. On unique continuation principles for some elliptic systems [Internet]. Annales de l'Institut Henri Poincaré – Analyse non linéaire. 2021 ; 38( 5): Se-Oct. 2021.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.anihpc.2020.12.001
  • Source: Mathematical Physics, Analysis and Geometry. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio et al. Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, v. 23, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11040-020-09352-4. Acesso em: 13 nov. 2024.
    • APA

      Falqui, G., Mencattini, I., Ortenzi, G., & Pedroni, M. (2020). Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, 23( 3), Se 2020. doi:10.1007/s11040-020-09352-4
    • NLM

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
    • Vancouver

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL, PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTALDO, Stefano e ONNIS, Irene Ignazia e PASSAMANI, Apoenã Passos. Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, v. No 2018, p. 91-101, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2018.05.028. Acesso em: 13 nov. 2024.
    • APA

      Montaldo, S., Onnis, I. I., & Passamani, A. P. (2018). Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, No 2018, 91-101. doi:10.1016/j.geomphys.2018.05.028
    • NLM

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
    • Vancouver

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 13 nov. 2024.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024