Filtros : "Ucrânia" "2017" "IME" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESHMATOV, Farkhod et al. Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, v. 145, n. 12, p. 5043-5052, 2017Tradução . . Disponível em: https://doi.org/10.1090/proc/13646. Acesso em: 11 nov. 2024.
    • APA

      Eshmatov, F., Futorny, V., Ovsienko, S., & Schwarz, J. F. (2017). Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, 145( 12), 5043-5052. doi:10.1090/proc/13646
    • NLM

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1090/proc/13646
    • Vancouver

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1090/proc/13646
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 11 nov. 2024.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael et al. The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, v. 490, p. 1-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.05.045. Acesso em: 11 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V., Kudryavtseva, G., & Plakhotnyk, M. (2017). The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, 490, 1-20. doi:10.1016/j.jalgebra.2017.05.045
    • NLM

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
    • Vancouver

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 11 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 11 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e OVSIENKO, Serge e SHESTAKOV, Ivan P. On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, v. 23, n. 1, p. 47-61, 2017Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443. Acesso em: 11 nov. 2024.
    • APA

      Kashuba, I., Ovsienko, S., & Shestakov, I. P. (2017). On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, 23( 1), 47-61. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • NLM

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 11 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • Vancouver

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 11 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024