Filtros : "Suécia" "IME-MAT" Removido: "MATTEO, MIGUEL ANGEL SALA DI" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: OPERADORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang e FUTORNY, Vyacheslav e NEKLYUDOV, Mikhail. A Jordan-Schwinger variant of the spectral theorem for linear operators. Journal of Mathematical Analysis and Applications, v. 531, n. artigo 127808, p. 1-11, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127808. Acesso em: 17 nov. 2024.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2024). A Jordan-Schwinger variant of the spectral theorem for linear operators. Journal of Mathematical Analysis and Applications, 531( artigo 127808), 1-11. doi:10.1016/j.jmaa.2023.127808
    • NLM

      Bock W, Futorny V, Neklyudov M. A Jordan-Schwinger variant of the spectral theorem for linear operators [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( artigo 127808): 1-11.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127808
    • Vancouver

      Bock W, Futorny V, Neklyudov M. A Jordan-Schwinger variant of the spectral theorem for linear operators [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( artigo 127808): 1-11.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127808
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav e NILSSON, Jonathan. Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, v. 233, n. 1, p. 379-399, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11856-019-1909-z. Acesso em: 17 nov. 2024.
    • APA

      Billig, Y., Futorny, V., & Nilsson, J. (2019). Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, 233( 1), 379-399. doi:10.1007/s11856-019-1909-z
    • NLM

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s11856-019-1909-z
    • Vancouver

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s11856-019-1909-z
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 17 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, v. 436, n. 7, p. 2670-2700, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.11.010. Acesso em: 17 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., & Sergeichuk, V. V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436( 7), 2670-2700. doi:10.1016/j.laa.2011.11.010
    • NLM

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
    • Vancouver

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
  • Source: Algebras and Representation Theory. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KONIG, Steffen e MAZORCHUK, Volodymyr. Categories of induced modules and standardly stratified algebras. Algebras and Representation Theory, v. 5, n. 3, p. 259-276, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1016579318115. Acesso em: 17 nov. 2024.
    • APA

      Futorny, V., Konig, S., & Mazorchuk, V. (2002). Categories of induced modules and standardly stratified algebras. Algebras and Representation Theory, 5( 3), 259-276. doi:10.1023/A:1016579318115
    • NLM

      Futorny V, Konig S, Mazorchuk V. Categories of induced modules and standardly stratified algebras [Internet]. Algebras and Representation Theory. 2002 ; 5( 3): 259-276.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/A:1016579318115
    • Vancouver

      Futorny V, Konig S, Mazorchuk V. Categories of induced modules and standardly stratified algebras [Internet]. Algebras and Representation Theory. 2002 ; 5( 3): 259-276.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/A:1016579318115

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024