Source: Journal of Neural Engineering. Unidades: ICMC, IFSC
Subjects: TECNOLOGIAS DA SAÚDE, APRENDIZADO COMPUTACIONAL, ESQUIZOFRENIA, REDES COMPLEXAS, RECONHECIMENTO DE IMAGEM, DIAGNÓSTICO POR COMPUTADOR, CÉREBRO
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALVES, Caroline Lourenço et al. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia. Journal of Neural Engineering, v. 20, n. 5, p. 056025-1-056025-28, 2023Tradução . . Disponível em: https://doi.org/10.1088/1741-2552/acf734. Acesso em: 01 nov. 2024.APA
Alves, C. L., Oliveira, T. G. L. de, Porto, J. A. M., Aguiar, P. M. de C., Sena, E. P. de, Rodrigues, F. A., et al. (2023). Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia. Journal of Neural Engineering, 20( 5), 056025-1-056025-28. doi:10.1088/1741-2552/acf734NLM
Alves CL, Oliveira TGL de, Porto JAM, Aguiar PM de C, Sena EP de, Rodrigues FA, Pineda AM, Thielemann C. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia [Internet]. Journal of Neural Engineering. 2023 ; 20( 5): 056025-1-056025-28.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1088/1741-2552/acf734Vancouver
Alves CL, Oliveira TGL de, Porto JAM, Aguiar PM de C, Sena EP de, Rodrigues FA, Pineda AM, Thielemann C. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia [Internet]. Journal of Neural Engineering. 2023 ; 20( 5): 056025-1-056025-28.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1088/1741-2552/acf734