Filtros : "Universidad de Chile (UCHILE)" "IME-MAE" Removidos: "Date, M" "Pereira, Pedro Luiz Valls" "FE-SD" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Saulo Rabello Maciel de et al. Asymptotic behavior of a stationary silo with absorbing walls. Journal of Statistical Physics, v. 106, n. 3-4, p. 521-546, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1013702220938. Acesso em: 31 out. 2024.
    • APA

      Barros, S. R. M. de, Ferrari, P. A., Garcia, N. L., & Martinez, S. A. (2002). Asymptotic behavior of a stationary silo with absorbing walls. Journal of Statistical Physics, 106( 3-4), 521-546. doi:10.1023/A:1013702220938
    • NLM

      Barros SRM de, Ferrari PA, Garcia NL, Martinez SA. Asymptotic behavior of a stationary silo with absorbing walls [Internet]. Journal of Statistical Physics. 2002 ; 106( 3-4): 521-546.[citado 2024 out. 31 ] Available from: https://doi.org/10.1023/A:1013702220938
    • Vancouver

      Barros SRM de, Ferrari PA, Garcia NL, Martinez SA. Asymptotic behavior of a stationary silo with absorbing walls [Internet]. Journal of Statistical Physics. 2002 ; 106( 3-4): 521-546.[citado 2024 out. 31 ] Available from: https://doi.org/10.1023/A:1013702220938
  • Source: Advances in Applied Probability. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e MARTÍNEZ, Servet e PICCO, Pierre. Existence of non-trivial quasi-stationary distributions in the birth-death chain. Advances in Applied Probability, v. 24, n. 4, p. 795-813, 1992Tradução . . Disponível em: https://doi.org/10.2307/1427713. Acesso em: 31 out. 2024.
    • APA

      Ferrari, P. A., Martínez, S., & Picco, P. (1992). Existence of non-trivial quasi-stationary distributions in the birth-death chain. Advances in Applied Probability, 24( 4), 795-813. doi:10.2307/1427713
    • NLM

      Ferrari PA, Martínez S, Picco P. Existence of non-trivial quasi-stationary distributions in the birth-death chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4): 795-813.[citado 2024 out. 31 ] Available from: https://doi.org/10.2307/1427713
    • Vancouver

      Ferrari PA, Martínez S, Picco P. Existence of non-trivial quasi-stationary distributions in the birth-death chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4): 795-813.[citado 2024 out. 31 ] Available from: https://doi.org/10.2307/1427713
  • Source: Advances in Applied Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e MARTINEZ, Servet e PICCO, Picco. Existence of non-trivial quasi stationary distribution in the birth-dieth chain. Advances in Applied Probability, v. 24, n. 4 , p. 795-813, 1992Tradução . . Disponível em: https://doi.org/10.2307/1427713. Acesso em: 31 out. 2024.
    • APA

      Ferrari, P. A., Martinez, S., & Picco, P. (1992). Existence of non-trivial quasi stationary distribution in the birth-dieth chain. Advances in Applied Probability, 24( 4 ), 795-813. doi:10.2307/1427713
    • NLM

      Ferrari PA, Martinez S, Picco P. Existence of non-trivial quasi stationary distribution in the birth-dieth chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4 ): 795-813.[citado 2024 out. 31 ] Available from: https://doi.org/10.2307/1427713
    • Vancouver

      Ferrari PA, Martinez S, Picco P. Existence of non-trivial quasi stationary distribution in the birth-dieth chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4 ): 795-813.[citado 2024 out. 31 ] Available from: https://doi.org/10.2307/1427713

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024