Filtros : "ESCOAMENTO MULTIFÁSICO" "Grã-Bretanha (Reino Unido, UK)" "ICMC-SME" Removidos: "Universidade Federal do Espírito Santo (UFES)" "RODRIGUES, JOSE ANTUNES" "Instituto de Física de São Carlos - IFSC" Limpar

Filtros



Refine with date range


  • Source: Reviews of Modern Physics. Unidade: ICMC

    Subjects: MATEMÁTICA APLICADA, MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STANKOVSKI, Tomislav et al. Coupling functions: universal insights into dynamical interaction mechanisms. Reviews of Modern Physics, v. 89, n. 4, p. 045001-1-045001-50, 2017Tradução . . Disponível em: https://doi.org/10.1103/RevModPhys.89.045001. Acesso em: 18 nov. 2024.
    • APA

      Stankovski, T., Pereira, T., McClintock, P. V. E., & Stefanovska, A. (2017). Coupling functions: universal insights into dynamical interaction mechanisms. Reviews of Modern Physics, 89( 4), 045001-1-045001-50. doi:10.1103/RevModPhys.89.045001
    • NLM

      Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: universal insights into dynamical interaction mechanisms [Internet]. Reviews of Modern Physics. 2017 ; 89( 4): 045001-1-045001-50.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/RevModPhys.89.045001
    • Vancouver

      Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: universal insights into dynamical interaction mechanisms [Internet]. Reviews of Modern Physics. 2017 ; 89( 4): 045001-1-045001-50.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/RevModPhys.89.045001
  • Source: Applied Numerical Mathematics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCKEE, S e CUMINATO, José Alberto. A novel variant of a product integration method and its relation to discrete fractional calculus. Applied Numerical Mathematics, v. 114, p. 179-187, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.apnum.2016.09.014. Acesso em: 18 nov. 2024.
    • APA

      McKee, S., & Cuminato, J. A. (2017). A novel variant of a product integration method and its relation to discrete fractional calculus. Applied Numerical Mathematics, 114, 179-187. doi:10.1016/j.apnum.2016.09.014
    • NLM

      McKee S, Cuminato JA. A novel variant of a product integration method and its relation to discrete fractional calculus [Internet]. Applied Numerical Mathematics. 2017 ;114 179-187.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.apnum.2016.09.014
    • Vancouver

      McKee S, Cuminato JA. A novel variant of a product integration method and its relation to discrete fractional calculus [Internet]. Applied Numerical Mathematics. 2017 ;114 179-187.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.apnum.2016.09.014
  • Source: Physical Review E: covering statistical, nonlinear, biological, and soft matter physics. Unidade: ICMC

    Subjects: MATEMÁTICA APLICADA, MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Tiago e TURAEV, Dmitry. Exponential energy growth in adiabatically changing hamiltonian systems. Physical Review E: covering statistical, nonlinear, biological, and soft matter physics, v. 91, n. Ja 2015, p. 010901-1-010901-4, 2015Tradução . . Disponível em: https://doi.org/10.1103/PhysRevE.91.010901. Acesso em: 18 nov. 2024.
    • APA

      Pereira, T., & Turaev, D. (2015). Exponential energy growth in adiabatically changing hamiltonian systems. Physical Review E: covering statistical, nonlinear, biological, and soft matter physics, 91( Ja 2015), 010901-1-010901-4. doi:10.1103/PhysRevE.91.010901
    • NLM

      Pereira T, Turaev D. Exponential energy growth in adiabatically changing hamiltonian systems [Internet]. Physical Review E: covering statistical, nonlinear, biological, and soft matter physics. 2015 ; 91( Ja 2015): 010901-1-010901-4.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/PhysRevE.91.010901
    • Vancouver

      Pereira T, Turaev D. Exponential energy growth in adiabatically changing hamiltonian systems [Internet]. Physical Review E: covering statistical, nonlinear, biological, and soft matter physics. 2015 ; 91( Ja 2015): 010901-1-010901-4.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/PhysRevE.91.010901
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCKEE, S. e CUMINATO, José Alberto. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, v. 423, n. 1, p. 243-252, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.09.067. Acesso em: 18 nov. 2024.
    • APA

      McKee, S., & Cuminato, J. A. (2015). Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, 423( 1), 243-252. doi:10.1016/j.jmaa.2014.09.067
    • NLM

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067
    • Vancouver

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024