Filtros : " IFSC007" "Estados Unidos" Removido: "Dias, Carlos Tadeu dos Santos" Limpar

Filtros



Refine with date range


  • Source: ACS Applied Materials and Interfaces. Unidade: IFSC

    Subjects: TERAPIA FOTODINÂMICA, NEOPLASIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA JUNIOR, Alexandre Mendes de et al. Enhancing phototoxicity in human colorectal tumor cells through nanoarchitectonics for synergistic photothermal and photodynamic therapies. ACS Applied Materials and Interfaces, v. 16, n. 18, p. 23742–23751 + supporting information, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsami.4c02247. Acesso em: 30 maio 2024.
    • APA

      Almeida Junior, A. M. de, Ferreira, A. S., Camacho, S. A., Moreira, L. G., Toledo, K. A., Oliveira Junior, O. N. de, & Aoki, P. H. B. (2024). Enhancing phototoxicity in human colorectal tumor cells through nanoarchitectonics for synergistic photothermal and photodynamic therapies. ACS Applied Materials and Interfaces, 16( 18), 23742–23751 + supporting information. doi:10.1021/acsami.4c02247
    • NLM

      Almeida Junior AM de, Ferreira AS, Camacho SA, Moreira LG, Toledo KA, Oliveira Junior ON de, Aoki PHB. Enhancing phototoxicity in human colorectal tumor cells through nanoarchitectonics for synergistic photothermal and photodynamic therapies [Internet]. ACS Applied Materials and Interfaces. 2024 ; 16( 18): 23742–23751 + supporting information.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.4c02247
    • Vancouver

      Almeida Junior AM de, Ferreira AS, Camacho SA, Moreira LG, Toledo KA, Oliveira Junior ON de, Aoki PHB. Enhancing phototoxicity in human colorectal tumor cells through nanoarchitectonics for synergistic photothermal and photodynamic therapies [Internet]. ACS Applied Materials and Interfaces. 2024 ; 16( 18): 23742–23751 + supporting information.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.4c02247
  • Source: ACS Applied Nano Materials. Unidades: IFSC, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COVID-19, EFEITO RAMAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAZIN, Wallance Moreira et al. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection. ACS Applied Nano Materials, v. 7, n. Ja 2024, p. 2335-2342, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.3c05848. Acesso em: 30 maio 2024.
    • APA

      Pazin, W. M., Furini, L. N., Braz, D. C., Popolin Neto, M., Fernandes, J. D., Constantino, C. J. L., & Oliveira Junior, O. N. de. (2024). Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection. ACS Applied Nano Materials, 7( Ja 2024), 2335-2342. doi:10.1021/acsanm.3c05848
    • NLM

      Pazin WM, Furini LN, Braz DC, Popolin Neto M, Fernandes JD, Constantino CJL, Oliveira Junior ON de. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 2335-2342.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsanm.3c05848
    • Vancouver

      Pazin WM, Furini LN, Braz DC, Popolin Neto M, Fernandes JD, Constantino CJL, Oliveira Junior ON de. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 2335-2342.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsanm.3c05848
  • Source: ACS Applied Materials and Interfaces. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, PROCESSAMENTO DE IMAGENS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Lucas Daniel Chiba de et al. Sticky multicolor mechanochromic labels. ACS Applied Materials and Interfaces, v. 16, n. 11, p. 14144-14151 + supporting information: S1-S12, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsami.3c19420. Acesso em: 30 maio 2024.
    • APA

      Castro, L. D. C. de, Engels, T. A. P., Oliveira Junior, O. N. de, & Schenning, A. P. H. J. (2024). Sticky multicolor mechanochromic labels. ACS Applied Materials and Interfaces, 16( 11), 14144-14151 + supporting information: S1-S12. doi:10.1021/acsami.3c19420
    • NLM

      Castro LDC de, Engels TAP, Oliveira Junior ON de, Schenning APHJ. Sticky multicolor mechanochromic labels [Internet]. ACS Applied Materials and Interfaces. 2024 ; 16( 11): 14144-14151 + supporting information: S1-S12.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.3c19420
    • Vancouver

      Castro LDC de, Engels TAP, Oliveira Junior ON de, Schenning APHJ. Sticky multicolor mechanochromic labels [Internet]. ACS Applied Materials and Interfaces. 2024 ; 16( 11): 14144-14151 + supporting information: S1-S12.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.3c19420
  • Source: Nano Letters. Unidades: IFSC, EESC

    Subjects: ÓPTICA, LASER, OURO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHANG, Fengchan et al. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles. Nano Letters, v. 24, n. 12, p. 3785-3792 + supporting information: s1-s11, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.nanolett.4c00379. Acesso em: 30 maio 2024.
    • APA

      Zhang, F., Oiticica, P. R. A., Arredondo, J. A., Arai, M. S., Oliveira Junior, O. N. de, Jaque, D., et al. (2024). Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles. Nano Letters, 24( 12), 3785-3792 + supporting information: s1-s11. doi:10.1021/acs.nanolett.4c00379
    • NLM

      Zhang F, Oiticica PRA, Arredondo JA, Arai MS, Oliveira Junior ON de, Jaque D, Dominguez AIF, Camargo ASS de, González PH. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles [Internet]. Nano Letters. 2024 ; 24( 12): 3785-3792 + supporting information: s1-s11.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acs.nanolett.4c00379
    • Vancouver

      Zhang F, Oiticica PRA, Arredondo JA, Arai MS, Oliveira Junior ON de, Jaque D, Dominguez AIF, Camargo ASS de, González PH. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles [Internet]. Nano Letters. 2024 ; 24( 12): 3785-3792 + supporting information: s1-s11.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acs.nanolett.4c00379
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: ELETROQUÍMICA, VITAMINA C, ELETROQUÍMICA, NANOPARTÍCULAS, NANOTECNOLOGIA, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Thiago Serafim e BOTT NETO, José Luiz e OLIVEIRA JUNIOR, Osvaldo Novais de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite. ACS Applied Nano Materials, v. 7, n. Ja 2024, p. 4938-4945 + Supporting Information: S1-S3, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.3c05701. Acesso em: 30 maio 2024.
    • APA

      Martins, T. S., Bott Neto, J. L., & Oliveira Junior, O. N. de. (2024). Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite. ACS Applied Nano Materials, 7( Ja 2024), 4938-4945 + Supporting Information: S1-S3. doi:10.1021/acsanm.3c05701
    • NLM

      Martins TS, Bott Neto JL, Oliveira Junior ON de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 4938-4945 + Supporting Information: S1-S3.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsanm.3c05701
    • Vancouver

      Martins TS, Bott Neto JL, Oliveira Junior ON de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 4938-4945 + Supporting Information: S1-S3.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsanm.3c05701
  • Source: ACS Applied Electronic Materials. Unidade: IFSC

    Subjects: ELETROQUÍMICA, TRANSISTORES, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUGINIESKI, Marcos e TORRES, Bruno Bassi Millan e FARIA, Gregório Couto. Guidelines on measuring volumetric capacitance in organic electrochemical transistors. ACS Applied Electronic Materials, v. 6, n. 4, p. 2225-2231 + supporting information: S1-S10, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsaelm.3c01673. Acesso em: 30 maio 2024.
    • APA

      Luginieski, M., Torres, B. B. M., & Faria, G. C. (2024). Guidelines on measuring volumetric capacitance in organic electrochemical transistors. ACS Applied Electronic Materials, 6( 4), 2225-2231 + supporting information: S1-S10. doi:10.1021/acsaelm.3c01673
    • NLM

      Luginieski M, Torres BBM, Faria GC. Guidelines on measuring volumetric capacitance in organic electrochemical transistors [Internet]. ACS Applied Electronic Materials. 2024 ; 6( 4): 2225-2231 + supporting information: S1-S10.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsaelm.3c01673
    • Vancouver

      Luginieski M, Torres BBM, Faria GC. Guidelines on measuring volumetric capacitance in organic electrochemical transistors [Internet]. ACS Applied Electronic Materials. 2024 ; 6( 4): 2225-2231 + supporting information: S1-S10.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsaelm.3c01673
  • Source: Journal of Chemical Physics. Unidade: IFSC

    Subjects: ELETROMAGNETISMO, FOTÔNICA, ÓPTICA ELETRÔNICA, POLÍMEROS (MATERIAIS), MATERIAIS NANOESTRUTURADOS

    Disponível em 2025-02-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, William Orivaldo Faria e OLIVEIRA JUNIOR, Osvaldo Novais de e MEJÍA-SALAZAR, Jorge Ricardo. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level. Journal of Chemical Physics, v. 160, n. 7, p. 071104-1-071104-6, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0183806. Acesso em: 30 maio 2024.
    • APA

      Carvalho, W. O. F., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2024). Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level. Journal of Chemical Physics, 160( 7), 071104-1-071104-6. doi:10.1063/5.0183806
    • NLM

      Carvalho WOF, Oliveira Junior ON de, Mejía-Salazar JR. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level [Internet]. Journal of Chemical Physics. 2024 ; 160( 7): 071104-1-071104-6.[citado 2024 maio 30 ] Available from: https://doi.org/10.1063/5.0183806
    • Vancouver

      Carvalho WOF, Oliveira Junior ON de, Mejía-Salazar JR. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level [Internet]. Journal of Chemical Physics. 2024 ; 160( 7): 071104-1-071104-6.[citado 2024 maio 30 ] Available from: https://doi.org/10.1063/5.0183806
  • Source: Conference Papers. Conference titles: Biophotonics Congress: Optics in the Life Sciences. Unidades: IFSC, EESC

    Subjects: NANOPARTÍCULAS, ÓPTICA, LUMINESCÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHANG, Fengchan et al. Plasmonic trapping of a single upconverting nanoparticle: enhanced upconversion fluorescence and trapping stability. 2023, Anais.. Washington, DC: Optical Society of America - OSA, 2023. Disponível em: https://doi.org/10.1364/OMA.2023.AM3D.3. Acesso em: 30 maio 2024.
    • APA

      Zhang, F., Oiticica, P. R. A., Arai, M. S., Oliveira Junior, O. N. de, de Camargo, A. S. S., García, D. J., & González, P. H. (2023). Plasmonic trapping of a single upconverting nanoparticle: enhanced upconversion fluorescence and trapping stability. In Conference Papers. Washington, DC: Optical Society of America - OSA. doi:10.1364/OMA.2023.AM3D.3
    • NLM

      Zhang F, Oiticica PRA, Arai MS, Oliveira Junior ON de, de Camargo ASS, García DJ, González PH. Plasmonic trapping of a single upconverting nanoparticle: enhanced upconversion fluorescence and trapping stability [Internet]. Conference Papers. 2023 ;[citado 2024 maio 30 ] Available from: https://doi.org/10.1364/OMA.2023.AM3D.3
    • Vancouver

      Zhang F, Oiticica PRA, Arai MS, Oliveira Junior ON de, de Camargo ASS, García DJ, González PH. Plasmonic trapping of a single upconverting nanoparticle: enhanced upconversion fluorescence and trapping stability [Internet]. Conference Papers. 2023 ;[citado 2024 maio 30 ] Available from: https://doi.org/10.1364/OMA.2023.AM3D.3
  • Source: ACS Omega. Unidade: IFSC

    Subjects: NEOPLASIAS, PECUÁRIA LEITEIRA, STAPHYLOCOCCUS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Andrey Coatrini et al. Nanoarchitectonic e-tongue of electrospun zein/curcumin carbon dots for detecting staphylococcus aureus in milk. ACS Omega, v. 8, n. 15, p. 13721-13732, 2023Tradução . . Disponível em: https://doi.org/10.1021/acsomega.2c07944. Acesso em: 30 maio 2024.
    • APA

      Soares, A. C., Soares, J. C., Santos, D. M. dos, Migliorini, F. L., Popolin Neto, M., Pinto, D. D. S. C., et al. (2023). Nanoarchitectonic e-tongue of electrospun zein/curcumin carbon dots for detecting staphylococcus aureus in milk. ACS Omega, 8( 15), 13721-13732. doi:10.1021/acsomega.2c07944
    • NLM

      Soares AC, Soares JC, Santos DM dos, Migliorini FL, Popolin Neto M, Pinto DDSC, Carvalho WA, Brandão H de M, Paulovich FV, Corrêa DS, Oliveira Junior ON de, Mattoso LHC. Nanoarchitectonic e-tongue of electrospun zein/curcumin carbon dots for detecting staphylococcus aureus in milk [Internet]. ACS Omega. 2023 ; 8( 15): 13721-13732.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsomega.2c07944
    • Vancouver

      Soares AC, Soares JC, Santos DM dos, Migliorini FL, Popolin Neto M, Pinto DDSC, Carvalho WA, Brandão H de M, Paulovich FV, Corrêa DS, Oliveira Junior ON de, Mattoso LHC. Nanoarchitectonic e-tongue of electrospun zein/curcumin carbon dots for detecting staphylococcus aureus in milk [Internet]. ACS Omega. 2023 ; 8( 15): 13721-13732.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsomega.2c07944
  • Source: Microchemical Journal. Unidade: IFSC

    Subjects: PARACETAMOL, BIOTECNOLOGIA, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Rafaela Cristina de et al. Flexible electrochemical sensor printed with conductive ink made with craft glue and graphite to detect drug and neurotransmitter. Microchemical Journal, v. 191, p. 108823-1-108823-8, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.microc.2023.108823. Acesso em: 30 maio 2024.
    • APA

      Freitas, R. C. de, Fonseca, W. T. da, Azzi, D. C., Raymundo-Pereira, P. A., Oliveira Junior, O. N. de, & Janegitz, B. C. (2023). Flexible electrochemical sensor printed with conductive ink made with craft glue and graphite to detect drug and neurotransmitter. Microchemical Journal, 191, 108823-1-108823-8. doi:10.1016/j.microc.2023.108823
    • NLM

      Freitas RC de, Fonseca WT da, Azzi DC, Raymundo-Pereira PA, Oliveira Junior ON de, Janegitz BC. Flexible electrochemical sensor printed with conductive ink made with craft glue and graphite to detect drug and neurotransmitter [Internet]. Microchemical Journal. 2023 ; 191 108823-1-108823-8.[citado 2024 maio 30 ] Available from: https://doi.org/10.1016/j.microc.2023.108823
    • Vancouver

      Freitas RC de, Fonseca WT da, Azzi DC, Raymundo-Pereira PA, Oliveira Junior ON de, Janegitz BC. Flexible electrochemical sensor printed with conductive ink made with craft glue and graphite to detect drug and neurotransmitter [Internet]. Microchemical Journal. 2023 ; 191 108823-1-108823-8.[citado 2024 maio 30 ] Available from: https://doi.org/10.1016/j.microc.2023.108823
  • Source: ACS Sustainable Chemistry and Engineering. Unidades: IQSC, IFSC

    Subjects: ANATOMIA, BIOTECNOLOGIA, CARBOIDRATOS, PEPTÍDEOS, PROTEÍNAS, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Nathalia Oezau et al. Flexible, bifunctional sensing platform made with biodegradable mats for detecting glucose in urine. ACS Sustainable Chemistry and Engineering, v. 11, n. 6, p. 2209-2218 + supporting information: S1-S16, 2023Tradução . . Disponível em: https://doi.org/10.1021/acssuschemeng.2c05438. Acesso em: 30 maio 2024.
    • APA

      Gomes, N. O., Paschoalin, R. T., Rodrigues, S. E. B., Sorigotti, A. R., Farinas, C. S., Mattoso, L. H. C., et al. (2023). Flexible, bifunctional sensing platform made with biodegradable mats for detecting glucose in urine. ACS Sustainable Chemistry and Engineering, 11( 6), 2209-2218 + supporting information: S1-S16. doi:10.1021/acssuschemeng.2c05438
    • NLM

      Gomes NO, Paschoalin RT, Rodrigues SEB, Sorigotti AR, Farinas CS, Mattoso LHC, Machado SAS, Oliveira Junior ON de, Raymundo-Pereira PA. Flexible, bifunctional sensing platform made with biodegradable mats for detecting glucose in urine [Internet]. ACS Sustainable Chemistry and Engineering. 2023 ; 11( 6): 2209-2218 + supporting information: S1-S16.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acssuschemeng.2c05438
    • Vancouver

      Gomes NO, Paschoalin RT, Rodrigues SEB, Sorigotti AR, Farinas CS, Mattoso LHC, Machado SAS, Oliveira Junior ON de, Raymundo-Pereira PA. Flexible, bifunctional sensing platform made with biodegradable mats for detecting glucose in urine [Internet]. ACS Sustainable Chemistry and Engineering. 2023 ; 11( 6): 2209-2218 + supporting information: S1-S16.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acssuschemeng.2c05438
  • Source: Journal of Physical Chemistry C. Unidades: IFSC, EESC

    Subjects: ELETROQUÍMICA ORGÂNICA, POLÍMEROS (QUÍMICA ORGÂNICA), TRANSISTORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Douglas José et al. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors. Journal of Physical Chemistry C, v. 127, n. 50, p. 24443-24451 + supporting information: S1-S3, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.3c06261. Acesso em: 30 maio 2024.
    • APA

      Coutinho, D. J., Feitosa, B. de A., Barbosa, H. F. de P., Colucci, R., Torres, B. B. M., & Faria, G. C. (2023). Distinctive behavior of field-effect and redox electrolyte-gated organic transistors. Journal of Physical Chemistry C, 127( 50), 24443-24451 + supporting information: S1-S3. doi:10.1021/acs.jpcc.3c06261
    • NLM

      Coutinho DJ, Feitosa B de A, Barbosa HF de P, Colucci R, Torres BBM, Faria GC. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors [Internet]. Journal of Physical Chemistry C. 2023 ; 127( 50): 24443-24451 + supporting information: S1-S3.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acs.jpcc.3c06261
    • Vancouver

      Coutinho DJ, Feitosa B de A, Barbosa HF de P, Colucci R, Torres BBM, Faria GC. Distinctive behavior of field-effect and redox electrolyte-gated organic transistors [Internet]. Journal of Physical Chemistry C. 2023 ; 127( 50): 24443-24451 + supporting information: S1-S3.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acs.jpcc.3c06261
  • Source: Abstracts. Conference titles: Photonics West. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, FILMES FINOS, DIELÉTRICOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARRIA, Jhon James Hernández e OLIVEIRA JUNIOR, Osvaldo Novais de e MEJÍA-SALAZAR, Jorge Ricardo. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules. 2022, Anais.. Bellingham: International Society for Optical Engineering - SPIE, 2022. Disponível em: https://spie.org/photonics-west/presentation/all-dielectric-nanophotonic-optical-tweezers-for-lossless-manipulation-of-biologically/11976-2. Acesso em: 30 maio 2024.
    • APA

      Sarria, J. J. H., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2022). All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules. In Abstracts. Bellingham: International Society for Optical Engineering - SPIE. Recuperado de https://spie.org/photonics-west/presentation/all-dielectric-nanophotonic-optical-tweezers-for-lossless-manipulation-of-biologically/11976-2
    • NLM

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules [Internet]. Abstracts. 2022 ;[citado 2024 maio 30 ] Available from: https://spie.org/photonics-west/presentation/all-dielectric-nanophotonic-optical-tweezers-for-lossless-manipulation-of-biologically/11976-2
    • Vancouver

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules [Internet]. Abstracts. 2022 ;[citado 2024 maio 30 ] Available from: https://spie.org/photonics-west/presentation/all-dielectric-nanophotonic-optical-tweezers-for-lossless-manipulation-of-biologically/11976-2
  • Source: Proceedings of SPIE. Conference titles: Photonics West. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, FILMES FINOS, DIELÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARRIA, Jhon James Hernández e OLIVEIRA JUNIOR, Osvaldo Novais de e MEJÍA-SALAZAR, Jorge Ricardo. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules (Presentation+Paper). Proceedings of SPIE. Bellingham: International Society for Optical Engineering - SPIE. Disponível em: https://doi.org/10.1117/12.2606905. Acesso em: 30 maio 2024. , 2022
    • APA

      Sarria, J. J. H., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2022). All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules (Presentation+Paper). Proceedings of SPIE. Bellingham: International Society for Optical Engineering - SPIE. doi:10.1117/12.2606905
    • NLM

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules (Presentation+Paper) [Internet]. Proceedings of SPIE. 2022 ; 11976 1197602-1-1197602-5.[citado 2024 maio 30 ] Available from: https://doi.org/10.1117/12.2606905
    • Vancouver

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. All-dielectric nanophotonic optical tweezers for lossless manipulation of biologically-relevant molecules (Presentation+Paper) [Internet]. Proceedings of SPIE. 2022 ; 11976 1197602-1-1197602-5.[citado 2024 maio 30 ] Available from: https://doi.org/10.1117/12.2606905
  • Source: ACS Applied Materials and Interfaces. Unidades: IFSC, EACH

    Subjects: NANOPARTÍCULAS, BIOPOLÍMEROS, BIOTECNOLOGIA, STAPHYLOCOCCUS, RADIAÇÃO ULTRAVIOLETA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Aline Orvalho et al. Bacterial photoinactivation using PLGA electrospun scaffolds. ACS Applied Materials and Interfaces, v. 13, n. 27, p. 31406-31417, 2021Tradução . . Disponível em: https://doi.org/10.1021/acsami.1c02686. Acesso em: 30 maio 2024.
    • APA

      Pereira, A. O., Italiano, I. M. L., Silva, T. R., Corrêa, T. Q., Paschoalin, R. T., Inada, N. M., et al. (2021). Bacterial photoinactivation using PLGA electrospun scaffolds. ACS Applied Materials and Interfaces, 13( 27), 31406-31417. doi:10.1021/acsami.1c02686
    • NLM

      Pereira AO, Italiano IML, Silva TR, Corrêa TQ, Paschoalin RT, Inada NM, Iermak I, van Riel Neto F, Araujo-Chaves JC, Marletta A, Tozoni JR, Mattoso LHC, Bagnato VS, Nantes-Cardoso IL, Oliveira Junior ON de, Campana PT. Bacterial photoinactivation using PLGA electrospun scaffolds [Internet]. ACS Applied Materials and Interfaces. 2021 ; 13( 27): 31406-31417.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.1c02686
    • Vancouver

      Pereira AO, Italiano IML, Silva TR, Corrêa TQ, Paschoalin RT, Inada NM, Iermak I, van Riel Neto F, Araujo-Chaves JC, Marletta A, Tozoni JR, Mattoso LHC, Bagnato VS, Nantes-Cardoso IL, Oliveira Junior ON de, Campana PT. Bacterial photoinactivation using PLGA electrospun scaffolds [Internet]. ACS Applied Materials and Interfaces. 2021 ; 13( 27): 31406-31417.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.1c02686
  • Source: ACS Applied Materials and Interfaces. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, DISPOSITIVOS ELETRÔNICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLARO, Pedro I. C. et al. Ionic conductive cellulose mats by solution blow spinning as substrate and a dielectric interstrate layer for flexible electronics. ACS Applied Materials and Interfaces, v. 13, n. 22, p. 26237-26246 + supporting information: 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1021/acsami.1c06274. Acesso em: 30 maio 2024.
    • APA

      Claro, P. I. C., Cunha, I., Paschoalin, R. T., Gaspar, D., Miranda, K., Oliveira Junior, O. N. de, et al. (2021). Ionic conductive cellulose mats by solution blow spinning as substrate and a dielectric interstrate layer for flexible electronics. ACS Applied Materials and Interfaces, 13( 22), 26237-26246 + supporting information: 1-11. doi:10.1021/acsami.1c06274
    • NLM

      Claro PIC, Cunha I, Paschoalin RT, Gaspar D, Miranda K, Oliveira Junior ON de, Martins R, Pereira L, Marconcini JM, Fortunato E, Mattoso LHC. Ionic conductive cellulose mats by solution blow spinning as substrate and a dielectric interstrate layer for flexible electronics [Internet]. ACS Applied Materials and Interfaces. 2021 ; 13( 22): 26237-26246 + supporting information: 1-11.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.1c06274
    • Vancouver

      Claro PIC, Cunha I, Paschoalin RT, Gaspar D, Miranda K, Oliveira Junior ON de, Martins R, Pereira L, Marconcini JM, Fortunato E, Mattoso LHC. Ionic conductive cellulose mats by solution blow spinning as substrate and a dielectric interstrate layer for flexible electronics [Internet]. ACS Applied Materials and Interfaces. 2021 ; 13( 22): 26237-26246 + supporting information: 1-11.[citado 2024 maio 30 ] Available from: https://doi.org/10.1021/acsami.1c06274
  • Source: Physical Review Letters. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, FÍSICA DA MATÉRIA CONDENSADA, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARRIA, Jhon James Hernández e OLIVEIRA JUNIOR, Osvaldo Novais de e MEJÍA-SALAZAR, Jorge Ricardo. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes. Physical Review Letters, v. 127, n. 18, p. 186803-1-186803-6, 2021Tradução . . Disponível em: https://doi.org/10.1103/PhysRevLett.127.186803. Acesso em: 30 maio 2024.
    • APA

      Sarria, J. J. H., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2021). Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes. Physical Review Letters, 127( 18), 186803-1-186803-6. doi:10.1103/PhysRevLett.127.186803
    • NLM

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes [Internet]. Physical Review Letters. 2021 ; 127( 18): 186803-1-186803-6.[citado 2024 maio 30 ] Available from: https://doi.org/10.1103/PhysRevLett.127.186803
    • Vancouver

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes [Internet]. Physical Review Letters. 2021 ; 127( 18): 186803-1-186803-6.[citado 2024 maio 30 ] Available from: https://doi.org/10.1103/PhysRevLett.127.186803
  • Source: ECS Meeting Abstracts. Conference titles: ECS Meeting. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e OLIVEIRA JUNIOR, Osvaldo Novais de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance. ECS Meeting Abstracts. Pennington: Electrochemical Society - ECS. Disponível em: https://doi.org/10.1149/MA2021-01561456mtgabs. Acesso em: 30 maio 2024. , 2021
    • APA

      Joshi, N. K. J., & Oliveira Junior, O. N. de. (2021). Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance. ECS Meeting Abstracts. Pennington: Electrochemical Society - ECS. doi:10.1149/MA2021-01561456mtgabs
    • NLM

      Joshi NKJ, Oliveira Junior ON de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance [Internet]. ECS Meeting Abstracts. 2021 ; MA2021-01( 56):[citado 2024 maio 30 ] Available from: https://doi.org/10.1149/MA2021-01561456mtgabs
    • Vancouver

      Joshi NKJ, Oliveira Junior ON de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance [Internet]. ECS Meeting Abstracts. 2021 ; MA2021-01( 56):[citado 2024 maio 30 ] Available from: https://doi.org/10.1149/MA2021-01561456mtgabs
  • Source: Virology. Unidade: IFSC

    Subjects: DENGUE, FILMES FINOS, SENSORES BIOMÉDICOS, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESPEDES, Graziely F. et al. On the role of surrounding regions in the fusion peptide in dengue virus infection. Virology, v. 557, p. 62-69, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.virol.2021.02.012. Acesso em: 30 maio 2024.
    • APA

      Cespedes, G. F., Nobre, T. M., Oliveira Junior, O. N. de, Bong, D., & Cilli, E. M. (2021). On the role of surrounding regions in the fusion peptide in dengue virus infection. Virology, 557, 62-69. doi:10.1016/j.virol.2021.02.012
    • NLM

      Cespedes GF, Nobre TM, Oliveira Junior ON de, Bong D, Cilli EM. On the role of surrounding regions in the fusion peptide in dengue virus infection [Internet]. Virology. 2021 ; 557 62-69.[citado 2024 maio 30 ] Available from: https://doi.org/10.1016/j.virol.2021.02.012
    • Vancouver

      Cespedes GF, Nobre TM, Oliveira Junior ON de, Bong D, Cilli EM. On the role of surrounding regions in the fusion peptide in dengue virus infection [Internet]. Virology. 2021 ; 557 62-69.[citado 2024 maio 30 ] Available from: https://doi.org/10.1016/j.virol.2021.02.012
  • Source: IEEE Sensors Journal. Unidades: IFSC, EESC

    Subjects: IMPEDÂNCIA ELÉTRICA, SENSORES BIOMÉDICOS, MATERIAIS NANOESTRUTURADOS, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUSCAGLIA, Lorenzo Antonio e OLIVEIRA JUNIOR, Osvaldo Novais de e CARMO, João Paulo Pereira do. Roadmap for electrical impedance spectroscopy for sensing: a tutorial. IEEE Sensors Journal, v. 21, n. 20, p. 22246-22257, 2021Tradução . . Disponível em: https://doi.org/10.1109/JSEN.2021.3085237. Acesso em: 30 maio 2024.
    • APA

      Buscaglia, L. A., Oliveira Junior, O. N. de, & Carmo, J. P. P. do. (2021). Roadmap for electrical impedance spectroscopy for sensing: a tutorial. IEEE Sensors Journal, 21( 20), 22246-22257. doi:10.1109/JSEN.2021.3085237
    • NLM

      Buscaglia LA, Oliveira Junior ON de, Carmo JPP do. Roadmap for electrical impedance spectroscopy for sensing: a tutorial [Internet]. IEEE Sensors Journal. 2021 ; 21( 20): 22246-22257.[citado 2024 maio 30 ] Available from: https://doi.org/10.1109/JSEN.2021.3085237
    • Vancouver

      Buscaglia LA, Oliveira Junior ON de, Carmo JPP do. Roadmap for electrical impedance spectroscopy for sensing: a tutorial [Internet]. IEEE Sensors Journal. 2021 ; 21( 20): 22246-22257.[citado 2024 maio 30 ] Available from: https://doi.org/10.1109/JSEN.2021.3085237

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024