Filtros : "Itália" "BENEVIERI, PIERLUIGI" Removido: "Irlanda" Limpar

Filtros



Refine with date range


  • Source: Zeitschrift für Analysis und ihre Anwendungen. Unidade: IME

    Subjects: OPERADORES, TOPOLOGIA ALGÉBRICA, ANÁLISE GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e PERA, Maria Patrizia. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree. Zeitschrift für Analysis und ihre Anwendungen, v. 43, n. 1/2, p. 169-197, 2024Tradução . . Disponível em: https://doi.org/10.4171/ZAA/1750. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., & Pera, M. P. (2024). An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree. Zeitschrift für Analysis und ihre Anwendungen, 43( 1/2), 169-197. doi:10.4171/ZAA/1750
    • NLM

      Benevieri P, Calamai A, Pera MP. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2024 ; 43( 1/2): 169-197.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/ZAA/1750
    • Vancouver

      Benevieri P, Calamai A, Pera MP. An infinite dimensional version of the Kronecker index and its relation with the Leray–Schauder degree [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2024 ; 43( 1/2): 169-197.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/ZAA/1750
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: OPERADORES NÃO LINEARES, OPERADORES DE FREDHOLM

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. An infinite dimensional version of the intermediate value theorem. Journal of Fixed Point Theory and Applications, v. 25, n. artigo 70, p. 1-25, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11784-023-01073-9. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2023). An infinite dimensional version of the intermediate value theorem. Journal of Fixed Point Theory and Applications, 25( artigo 70), 1-25. doi:10.1007/s11784-023-01073-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. An infinite dimensional version of the intermediate value theorem [Internet]. Journal of Fixed Point Theory and Applications. 2023 ; 25( artigo 70): 1-25.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s11784-023-01073-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. An infinite dimensional version of the intermediate value theorem [Internet]. Journal of Fixed Point Theory and Applications. 2023 ; 25( artigo 70): 1-25.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s11784-023-01073-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: AUTOVALORES E AUTOVETORES, TEORIA ESPECTRAL, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 499-523, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.006. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, 59( 2A), 499-523. doi:10.12775/TMNA.2021.006
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2021.006
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2021.006
  • Source: Mathematics. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case. Mathematics, v. 9, n. art. 561, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050561. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2021). Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case. Mathematics, 9( art. 561), 1-18. doi:10.3390/math9050561
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case [Internet]. Mathematics. 2021 ; 9( art. 561): 1-18.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3390/math9050561
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case [Internet]. Mathematics. 2021 ; 9( art. 561): 1-18.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3390/math9050561
  • Source: Zeitschrift für Analysis und ihre Anwendungen. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces. Zeitschrift für Analysis und ihre Anwendungen, v. 39, n. 4, p. 475-497, 2020Tradução . . Disponível em: https://doi.org/10.4171/ZAA/1669. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces. Zeitschrift für Analysis und ihre Anwendungen, 39( 4), 475-497. doi:10.4171/ZAA/1669
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2020 ; 39( 4): 475-497.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/ZAA/1669
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2020 ; 39( 4): 475-497.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/ZAA/1669
  • Source: Advanced Nonlinear Studies. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e IANNIZZOTTO, Antonio. Eigenvalue problems for Fredholm operators with set-valued perturbations. Advanced Nonlinear Studies, v. 20, n. 3, p. 701-723, 2020Tradução . . Disponível em: https://doi.org/10.1515/ans-2020-2090. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., & Iannizzotto, A. (2020). Eigenvalue problems for Fredholm operators with set-valued perturbations. Advanced Nonlinear Studies, 20( 3), 701-723. doi:10.1515/ans-2020-2090
    • NLM

      Benevieri P, Iannizzotto A. Eigenvalue problems for Fredholm operators with set-valued perturbations [Internet]. Advanced Nonlinear Studies. 2020 ; 20( 3): 701-723.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/ans-2020-2090
    • Vancouver

      Benevieri P, Iannizzotto A. Eigenvalue problems for Fredholm operators with set-valued perturbations [Internet]. Advanced Nonlinear Studies. 2020 ; 20( 3): 701-723.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/ans-2020-2090
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, v. 55, n. 1, p. 169-184, 2020Tradução . . Disponível em: https://doi.org/10.12775/tmna.2019.093. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/tmna.2019.093
  • Source: Annali di Matematica Pura ed Applicata. Unidade: IME

    Subjects: EQUAÇÕES ALGÉBRICAS LINEARES, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation of the eigenvalues of a perturbed linear operator. Annali di Matematica Pura ed Applicata, v. 197, n. 4, p. 1131-1149, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10231-017-0717-5. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2018). Global continuation of the eigenvalues of a perturbed linear operator. Annali di Matematica Pura ed Applicata, 197( 4), 1131-1149. doi:10.1007/s10231-017-0717-5
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation of the eigenvalues of a perturbed linear operator [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1131-1149.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s10231-017-0717-5
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation of the eigenvalues of a perturbed linear operator [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1131-1149.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s10231-017-0717-5
  • Source: Fixed Point Theory. Unidade: IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GRAU TOPOLÓGICO, OPERADORES DE FREDHOLM, ESPAÇOS DE BANACH

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e ZECCA, Pietro. Topological degree and atypical bifurcation results for a class of multivalued perturbations of Fredholm maps in Banach spaces. Fixed Point Theory, v. 18, n. 1, p. 85-106, 2017Tradução . . Disponível em: https://doi.org/10.24193/fpt-ro.2017.1.08. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., & Zecca, P. (2017). Topological degree and atypical bifurcation results for a class of multivalued perturbations of Fredholm maps in Banach spaces. Fixed Point Theory, 18( 1), 85-106. doi:10.24193/fpt-ro.2017.1.08
    • NLM

      Benevieri P, Zecca P. Topological degree and atypical bifurcation results for a class of multivalued perturbations of Fredholm maps in Banach spaces [Internet]. Fixed Point Theory. 2017 ; 18( 1): 85-106.[citado 2024 nov. 19 ] Available from: https://doi.org/10.24193/fpt-ro.2017.1.08
    • Vancouver

      Benevieri P, Zecca P. Topological degree and atypical bifurcation results for a class of multivalued perturbations of Fredholm maps in Banach spaces [Internet]. Fixed Point Theory. 2017 ; 18( 1): 85-106.[citado 2024 nov. 19 ] Available from: https://doi.org/10.24193/fpt-ro.2017.1.08
  • Source: Zeitschrift für Analysis und ihre Anwendungen. Unidade: IME

    Subjects: OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA ESPECTRAL, VALORES PRÓPRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations. Zeitschrift für Analysis und ihre Anwendungen, v. 36, n. 1, p. 99-128, 2017Tradução . . Disponível em: https://doi.org/10.4171/zaa/1581. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2017). On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations. Zeitschrift für Analysis und ihre Anwendungen, 36( 1), 99-128. doi:10.4171/zaa/1581
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2017 ;36( 1): 99-128.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/zaa/1581
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2017 ;36( 1): 99-128.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4171/zaa/1581
  • Source: Advanced Nonlinear Studies. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A continuation result for forced oscillations of constrained motion problems with infinite delay. Advanced Nonlinear Studies, v. 13, n. 2, p. 263-278, 2013Tradução . . Disponível em: https://doi.org/10.1515/ans-2013-0201. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2013). A continuation result for forced oscillations of constrained motion problems with infinite delay. Advanced Nonlinear Studies, 13( 2), 263-278. doi:10.1515/ans-2013-0201
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A continuation result for forced oscillations of constrained motion problems with infinite delay [Internet]. Advanced Nonlinear Studies. 2013 ; 13( 2): 263-278.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/ans-2013-0201
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A continuation result for forced oscillations of constrained motion problems with infinite delay [Internet]. Advanced Nonlinear Studies. 2013 ; 13( 2): 263-278.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/ans-2013-0201
  • Source: Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. On the existence of forced oscillations of retarded functional motion equations on a class of topologically nontrivial manifolds. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, v. 44, p. 5-17, 2012Tradução . . Disponível em: http://hdl.handle.net/10077/8269. Acesso em: 19 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2012). On the existence of forced oscillations of retarded functional motion equations on a class of topologically nontrivial manifolds. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, 44, 5-17. Recuperado de http://hdl.handle.net/10077/8269
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. On the existence of forced oscillations of retarded functional motion equations on a class of topologically nontrivial manifolds [Internet]. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics. 2012 ; 44 5-17.[citado 2024 nov. 19 ] Available from: http://hdl.handle.net/10077/8269
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. On the existence of forced oscillations of retarded functional motion equations on a class of topologically nontrivial manifolds [Internet]. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics. 2012 ; 44 5-17.[citado 2024 nov. 19 ] Available from: http://hdl.handle.net/10077/8269

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024