Filtros : "Rússia" "Moscow Mathematical Journal" Removidos: "IQ006" "Indexado no Scopus" "1986" Limpar

Filtros



Refine with date range


  • Source: Moscow Mathematical Journal. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene et al. Large emission regime in mean field luminescence. Moscow Mathematical Journal, v. 19, n. 1, p. 107-120, 2019Tradução . . Disponível em: https://doi.org/10.17323/1609-4514-2019-19-1-107-120. Acesso em: 13 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., Schultz, G. M., Vladimirov, A., & Iambartsev, A. (2019). Large emission regime in mean field luminescence. Moscow Mathematical Journal, 19( 1), 107-120. doi:10.17323/1609-4514-2019-19-1-107-120
    • NLM

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 13 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
    • Vancouver

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 13 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
  • Source: Moscow Mathematical Journal. Unidade: ICMC

    Subjects: GEOMETRIA, GEOMETRIA DIFERENCIAL, GEOMETRIA ALGÉBRICA, GRUPOS DE LIE

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANANIN, Alexandre e GROSSI, Carlos Henrique e SILVA, Júlio C. C. da. Poincaré's polyhedron theorem for cocompact groups in dimension 4. Moscow Mathematical Journal, v. 14, n. 4, p. 645-667, 2014Tradução . . Disponível em: http://www.mathjournals.org/mmj/2014-014-004/2014-014-004-001.pdf. Acesso em: 13 nov. 2024.
    • APA

      Ananin, A., Grossi, C. H., & Silva, J. C. C. da. (2014). Poincaré's polyhedron theorem for cocompact groups in dimension 4. Moscow Mathematical Journal, 14( 4), 645-667. Recuperado de http://www.mathjournals.org/mmj/2014-014-004/2014-014-004-001.pdf
    • NLM

      Ananin A, Grossi CH, Silva JCC da. Poincaré's polyhedron theorem for cocompact groups in dimension 4 [Internet]. Moscow Mathematical Journal. 2014 ; 14( 4): 645-667.[citado 2024 nov. 13 ] Available from: http://www.mathjournals.org/mmj/2014-014-004/2014-014-004-001.pdf
    • Vancouver

      Ananin A, Grossi CH, Silva JCC da. Poincaré's polyhedron theorem for cocompact groups in dimension 4 [Internet]. Moscow Mathematical Journal. 2014 ; 14( 4): 645-667.[citado 2024 nov. 13 ] Available from: http://www.mathjournals.org/mmj/2014-014-004/2014-014-004-001.pdf
  • Source: Moscow Mathematical Journal. Unidade: ICMC

    Subjects: GEOMETRIA, GEOMETRIA DIFERENCIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANAN'IN, Sasha e GROSSI, Carlos Henrique. Coordinate-free classic geometries. Moscow Mathematical Journal, v. 11, n. 4, p. 633-655, 2011Tradução . . Disponível em: http://www.ams.org/journals/distribution/mmj/vol11-4-2011/ananyin-grossi.pdf. Acesso em: 13 nov. 2024.
    • APA

      Anan'in, S., & Grossi, C. H. (2011). Coordinate-free classic geometries. Moscow Mathematical Journal, 11( 4), 633-655. Recuperado de http://www.ams.org/journals/distribution/mmj/vol11-4-2011/ananyin-grossi.pdf
    • NLM

      Anan'in S, Grossi CH. Coordinate-free classic geometries [Internet]. Moscow Mathematical Journal. 2011 ; 11( 4): 633-655.[citado 2024 nov. 13 ] Available from: http://www.ams.org/journals/distribution/mmj/vol11-4-2011/ananyin-grossi.pdf
    • Vancouver

      Anan'in S, Grossi CH. Coordinate-free classic geometries [Internet]. Moscow Mathematical Journal. 2011 ; 11( 4): 633-655.[citado 2024 nov. 13 ] Available from: http://www.ams.org/journals/distribution/mmj/vol11-4-2011/ananyin-grossi.pdf
  • Source: Moscow Mathematical Journal. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOGATYI, Semeon A. e GONÇALVES, Daciberg Lima e KUDRYAVTSEVA, Elena A. On the Wecken property for the root problem of mappings between surfaces. Moscow Mathematical Journal, v. 3, n. 4, p. 1223-1245, 2003Tradução . . Acesso em: 13 nov. 2024.
    • APA

      Bogatyi, S. A., Gonçalves, D. L., & Kudryavtseva, E. A. (2003). On the Wecken property for the root problem of mappings between surfaces. Moscow Mathematical Journal, 3( 4), 1223-1245.
    • NLM

      Bogatyi SA, Gonçalves DL, Kudryavtseva EA. On the Wecken property for the root problem of mappings between surfaces. Moscow Mathematical Journal. 2003 ; 3( 4): 1223-1245.[citado 2024 nov. 13 ]
    • Vancouver

      Bogatyi SA, Gonçalves DL, Kudryavtseva EA. On the Wecken property for the root problem of mappings between surfaces. Moscow Mathematical Journal. 2003 ; 3( 4): 1223-1245.[citado 2024 nov. 13 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024