Filtros : "GRUPOS TOPOLÓGICOS" "México" Removidos: " IFSC225" "CANA-DE-AÇÚCAR" "Peru" "Journal of Algebra" Limpar

Filtros



Limitar por data


  • Fonte: Topology and its Applications. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S. e TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, v. 285, n. art. 107380, p. 1-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107380. Acesso em: 14 nov. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Fonte: Topology and its Applications. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS PSEUDOCOMPACTOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador e TOMITA, Artur Hideyuki. Finite powers of selectively pseudocompact groups. Topology and its Applications, v. 248, p. 50-58, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.08.009. Acesso em: 14 nov. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2018). Finite powers of selectively pseudocompact groups. Topology and its Applications, 248, 50-58. doi:10.1016/j.topol.2018.08.009
    • NLM

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
  • Fonte: Topology and its Applications. Nome do evento: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TKACHENKO, Mikhail G e TOMITA, Artur Hideyuki. Cellularity in subgroups of paratopological groups. Topology and its Applications. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.topol.2015.05.081. Acesso em: 14 nov. 2024. , 2015
    • APA

      Tkachenko, M. G., & Tomita, A. H. (2015). Cellularity in subgroups of paratopological groups. Topology and its Applications. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.topol.2015.05.081
    • NLM

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2015.05.081
    • Vancouver

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2015.05.081
  • Fonte: Topology and its Applications. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, TEORIA DOS CONJUNTOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina e GARCIA-FERREIRA, S. e TOMITA, Artur Hideyuki. A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence. Topology and its Applications, v. 159, n. 4, p. 1258-1265, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2011.11.005. Acesso em: 14 nov. 2024.
    • APA

      Boero, A. C., Garcia-Ferreira, S., & Tomita, A. H. (2012). A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence. Topology and its Applications, 159( 4), 1258-1265. doi:10.1016/j.topol.2011.11.005
    • NLM

      Boero AC, Garcia-Ferreira S, Tomita AH. A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence [Internet]. Topology and its Applications. 2012 ; 159( 4): 1258-1265.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2011.11.005
    • Vancouver

      Boero AC, Garcia-Ferreira S, Tomita AH. A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence [Internet]. Topology and its Applications. 2012 ; 159( 4): 1258-1265.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.topol.2011.11.005
  • Fonte: Central European Journal of Mathematics. Unidade: IME

    Assuntos: TOPOLOGIA, GRUPOS TOPOLÓGICOS, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa et al. On the extent of star countable spaces. Central European Journal of Mathematics, v. 9, n. 3, p. 603-615, 2011Tradução . . Disponível em: https://doi.org/10.2478/s11533-011-0018-y. Acesso em: 14 nov. 2024.
    • APA

      Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., & Wilson, R. G. (2011). On the extent of star countable spaces. Central European Journal of Mathematics, 9( 3), 603-615. doi:10.2478/s11533-011-0018-y
    • NLM

      Alas OT, Junqueira LR, Mill J van, Tkachuk VV, Wilson RG. On the extent of star countable spaces [Internet]. Central European Journal of Mathematics. 2011 ; 9( 3): 603-615.[citado 2024 nov. 14 ] Available from: https://doi.org/10.2478/s11533-011-0018-y
    • Vancouver

      Alas OT, Junqueira LR, Mill J van, Tkachuk VV, Wilson RG. On the extent of star countable spaces [Internet]. Central European Journal of Mathematics. 2011 ; 9( 3): 603-615.[citado 2024 nov. 14 ] Available from: https://doi.org/10.2478/s11533-011-0018-y
  • Fonte: Topology Proceedings. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador e TOMITA, Artur Hideyuki. Pseudocompact dense subgroups without non-trivial convergent sequences of some compact groups. Topology Proceedings, v. 31, n. 1, p. 97-114, 2007Tradução . . Disponível em: http://topology.nipissingu.ca/tp/reprints/v31/tp31110.pdf. Acesso em: 14 nov. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2007). Pseudocompact dense subgroups without non-trivial convergent sequences of some compact groups. Topology Proceedings, 31( 1), 97-114. Recuperado de http://topology.nipissingu.ca/tp/reprints/v31/tp31110.pdf
    • NLM

      Garcia-Ferreira S, Tomita AH. Pseudocompact dense subgroups without non-trivial convergent sequences of some compact groups [Internet]. Topology Proceedings. 2007 ; 31( 1): 97-114.[citado 2024 nov. 14 ] Available from: http://topology.nipissingu.ca/tp/reprints/v31/tp31110.pdf
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Pseudocompact dense subgroups without non-trivial convergent sequences of some compact groups [Internet]. Topology Proceedings. 2007 ; 31( 1): 97-114.[citado 2024 nov. 14 ] Available from: http://topology.nipissingu.ca/tp/reprints/v31/tp31110.pdf
  • Fonte: Topology Proceedings. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e TKACHUK, Vladimir V e WILSON, Richard G. Covering properties and neighborhood assignments. Topology Proceedings, v. 30, n. 1, p. 25-38, 2006Tradução . . Disponível em: https://topology.nipissingu.ca/tp/reprints/v30/tp30102.pdf. Acesso em: 14 nov. 2024.
    • APA

      Alas, O. T., Tkachuk, V. V., & Wilson, R. G. (2006). Covering properties and neighborhood assignments. Topology Proceedings, 30( 1), 25-38. Recuperado de https://topology.nipissingu.ca/tp/reprints/v30/tp30102.pdf
    • NLM

      Alas OT, Tkachuk VV, Wilson RG. Covering properties and neighborhood assignments [Internet]. Topology Proceedings. 2006 ; 30( 1): 25-38.[citado 2024 nov. 14 ] Available from: https://topology.nipissingu.ca/tp/reprints/v30/tp30102.pdf
    • Vancouver

      Alas OT, Tkachuk VV, Wilson RG. Covering properties and neighborhood assignments [Internet]. Topology Proceedings. 2006 ; 30( 1): 25-38.[citado 2024 nov. 14 ] Available from: https://topology.nipissingu.ca/tp/reprints/v30/tp30102.pdf
  • Fonte: Topology Proceedings. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e TKACHUK, Vladimir V e WILSON, Richard G. Closures of discrete sets often reflect global properties. Topology Proceedings, v. 25, p. 27-44, 2000Tradução . . Disponível em: https://topology.nipissingu.ca/tp/reprints/v25/tp25103.pdf. Acesso em: 14 nov. 2024.
    • APA

      Alas, O. T., Tkachuk, V. V., & Wilson, R. G. (2000). Closures of discrete sets often reflect global properties. Topology Proceedings, 25, 27-44. Recuperado de https://topology.nipissingu.ca/tp/reprints/v25/tp25103.pdf
    • NLM

      Alas OT, Tkachuk VV, Wilson RG. Closures of discrete sets often reflect global properties [Internet]. Topology Proceedings. 2000 ; 25 27-44.[citado 2024 nov. 14 ] Available from: https://topology.nipissingu.ca/tp/reprints/v25/tp25103.pdf
    • Vancouver

      Alas OT, Tkachuk VV, Wilson RG. Closures of discrete sets often reflect global properties [Internet]. Topology Proceedings. 2000 ; 25 27-44.[citado 2024 nov. 14 ] Available from: https://topology.nipissingu.ca/tp/reprints/v25/tp25103.pdf
  • Fonte: Commentationes Mathematicae Universitatis Carolinae. Unidade: IME

    Assuntos: GRUPOS TOPOLÓGICOS, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa et al. Connectedness and local connectedness of topological groups and extensions. Commentationes Mathematicae Universitatis Carolinae, v. 40, n. 4, p. 735-753, 1999Tradução . . Disponível em: https://eudml.org/doc/248437. Acesso em: 14 nov. 2024.
    • APA

      Alas, O. T., Tkachenko, M. G., Tkachuk, V. V., & Wilson, R. G. (1999). Connectedness and local connectedness of topological groups and extensions. Commentationes Mathematicae Universitatis Carolinae, 40( 4), 735-753. Recuperado de https://eudml.org/doc/248437
    • NLM

      Alas OT, Tkachenko MG, Tkachuk VV, Wilson RG. Connectedness and local connectedness of topological groups and extensions [Internet]. Commentationes Mathematicae Universitatis Carolinae. 1999 ; 40( 4): 735-753.[citado 2024 nov. 14 ] Available from: https://eudml.org/doc/248437
    • Vancouver

      Alas OT, Tkachenko MG, Tkachuk VV, Wilson RG. Connectedness and local connectedness of topological groups and extensions [Internet]. Commentationes Mathematicae Universitatis Carolinae. 1999 ; 40( 4): 735-753.[citado 2024 nov. 14 ] Available from: https://eudml.org/doc/248437
  • Fonte: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa et al. Almost all submaximal groups are paracompact and σ -discrete. Fundamenta Mathematicae, v. 156, n. 3, p. 241-260, 1998Tradução . . Disponível em: http://matwbn.icm.edu.pl/ksiazki/fm/fm156/fm15633.pdf. Acesso em: 14 nov. 2024.
    • APA

      Alas, O. T., Protasov, I. V., Tkacenko, M. G., Tkachuk, V. V., Wilson, R. G., & Yaschenko, I. V. (1998). Almost all submaximal groups are paracompact and σ -discrete. Fundamenta Mathematicae, 156( 3), 241-260. Recuperado de http://matwbn.icm.edu.pl/ksiazki/fm/fm156/fm15633.pdf
    • NLM

      Alas OT, Protasov IV, Tkacenko MG, Tkachuk VV, Wilson RG, Yaschenko IV. Almost all submaximal groups are paracompact and σ -discrete [Internet]. Fundamenta Mathematicae. 1998 ; 156( 3): 241-260.[citado 2024 nov. 14 ] Available from: http://matwbn.icm.edu.pl/ksiazki/fm/fm156/fm15633.pdf
    • Vancouver

      Alas OT, Protasov IV, Tkacenko MG, Tkachuk VV, Wilson RG, Yaschenko IV. Almost all submaximal groups are paracompact and σ -discrete [Internet]. Fundamenta Mathematicae. 1998 ; 156( 3): 241-260.[citado 2024 nov. 14 ] Available from: http://matwbn.icm.edu.pl/ksiazki/fm/fm156/fm15633.pdf

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024