Recent advances in machine learning for electrochemical, optical, and gas sensors (2023)
Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC
Subjects: ELETROQUÍMICA, SENSORES QUÍMICOS, SENSORES ÓPTICOS, INTELIGÊNCIA ARTIFICIAL
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MATERON, Elsa Maria et al. Recent advances in machine learning for electrochemical, optical, and gas sensors. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_6. Acesso em: 17 nov. 2024.APA
Materon, E. M., Silva, F. S. R. da, Ribas, L. C., Joshi, N. K. J., Bruno, O. M., Carrilho, E., & Oliveira Junior, O. N. de. (2023). Recent advances in machine learning for electrochemical, optical, and gas sensors. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_6NLM
Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6Vancouver
Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6