Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Singapura" Removidos: "Reabilitação Oral" "CAP" "Bagnoli, Vicente Renato" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 15 nov. 2024.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS, INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, v. 26, n. 11, p. 1650188-1-1650188-26, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218127416501881. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2016). Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, 26( 11), 1650188-1-1650188-26. doi:10.1142/S0218127416501881
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416501881
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416501881
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, v. 17, n. 3, p. 1450018-1-1450018-17, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0219199714500187. Acesso em: 15 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2015). Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, 17( 3), 1450018-1-1450018-17. doi:10.1142/S0219199714500187
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199714500187
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199714500187
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C). International Journal of Bifurcation and Chaos, v. 25, n. 3, p. 1530009-1-1530009-111, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218127415300098. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2015). The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C). International Journal of Bifurcation and Chaos, 25( 3), 1530009-1-1530009-111. doi:10.1142/S0218127415300098
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C) [Internet]. International Journal of Bifurcation and Chaos. 2015 ; 25( 3): 1530009-1-1530009-111.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127415300098
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C) [Internet]. International Journal of Bifurcation and Chaos. 2015 ; 25( 3): 1530009-1-1530009-111.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127415300098
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, v. 24, n. 4, p. 1450044-1-1450044-30, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218127414500448. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2014). The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, 24( 4), 1450044-1-1450044-30. doi:10.1142/S0218127414500448
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127414500448
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127414500448
  • Source: Journal of Biological Systems. Unidade: ESALQ

    Subjects: ALGORITMOS GENÉTICOS, AMPHIPODA, CRUSTÁCEOS, ECOLOGIA MATEMÁTICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, MUDANÇA CLIMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ernesto Augusto Bueno da Fonseca et al. Ecological modeling of Talitroides topitotum (Crustacea: Amphipoda). Journal of Biological Systems, v. 22, n. 4, p. 601-616, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218339014500223. Acesso em: 15 nov. 2024.
    • APA

      Lima, E. A. B. da F., Matavelli, C., Ferreira, C. P., & Godoy, W. A. C. (2014). Ecological modeling of Talitroides topitotum (Crustacea: Amphipoda). Journal of Biological Systems, 22( 4), 601-616. doi:10.1142/S0218339014500223
    • NLM

      Lima EAB da F, Matavelli C, Ferreira CP, Godoy WAC. Ecological modeling of Talitroides topitotum (Crustacea: Amphipoda) [Internet]. Journal of Biological Systems. 2014 ; 22( 4): 601-616.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218339014500223
    • Vancouver

      Lima EAB da F, Matavelli C, Ferreira CP, Godoy WAC. Ecological modeling of Talitroides topitotum (Crustacea: Amphipoda) [Internet]. Journal of Biological Systems. 2014 ; 22( 4): 601-616.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218339014500223
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, v. 23, n. 8, p. 1350140-1-1350140-21, 2013Tradução . . Disponível em: https://doi.org/10.1142/S021812741350140X. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2013). Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, 23( 8), 1350140-1-1350140-21. doi:10.1142/S021812741350140X
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021812741350140X
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021812741350140X
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e WU, Jianhong e GABRIEL FILHO, Luís Roberto Almeida. Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems. International Journal of Bifurcation and Chaos, v. 21, n. 2, p. 513-526, 2011Tradução . . Disponível em: https://doi.org/10.1142/S0218127411028568. Acesso em: 15 nov. 2024.
    • APA

      Rodrigues, H. M., Wu, J., & Gabriel Filho, L. R. A. (2011). Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems. International Journal of Bifurcation and Chaos, 21( 2), 513-526. doi:10.1142/S0218127411028568
    • NLM

      Rodrigues HM, Wu J, Gabriel Filho LRA. Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems [Internet]. International Journal of Bifurcation and Chaos. 2011 ; 21( 2): 513-526.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127411028568
    • Vancouver

      Rodrigues HM, Wu J, Gabriel Filho LRA. Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems [Internet]. International Journal of Bifurcation and Chaos. 2011 ; 21( 2): 513-526.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127411028568
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. A gradient-like nonautonomous evolution process. International Journal of Bifurcation and Chaos, v. 20, n. 9, p. 2751-2760, 2010Tradução . . Disponível em: https://doi.org/10.1142/S021827410027337. Acesso em: 15 nov. 2024.
    • APA

      Caraballo, T., Langa, J. A., Rivero, F., & Carvalho, A. N. de. (2010). A gradient-like nonautonomous evolution process. International Journal of Bifurcation and Chaos, 20( 9), 2751-2760. doi:10.1142/S021827410027337
    • NLM

      Caraballo T, Langa JA, Rivero F, Carvalho AN de. A gradient-like nonautonomous evolution process [Internet]. International Journal of Bifurcation and Chaos. 2010 ; 20( 9): 2751-2760.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021827410027337
    • Vancouver

      Caraballo T, Langa JA, Rivero F, Carvalho AN de. A gradient-like nonautonomous evolution process [Internet]. International Journal of Bifurcation and Chaos. 2010 ; 20( 9): 2751-2760.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021827410027337
  • Conference titles: Equadiff 95 : International Conference on Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e TEIXEIRA, M. A. regularization of discontinuous vector fields. 1998, Anais.. Singapore: World Scientific, 1998. . Acesso em: 15 nov. 2024.
    • APA

      Sotomayor, J., & Teixeira, M. A. (1998). regularization of discontinuous vector fields. In . Singapore: World Scientific.
    • NLM

      Sotomayor J, Teixeira MA. regularization of discontinuous vector fields. 1998 ;[citado 2024 nov. 15 ]
    • Vancouver

      Sotomayor J, Teixeira MA. regularization of discontinuous vector fields. 1998 ;[citado 2024 nov. 15 ]
  • Source: International Journal of Bifurcation and Chaos. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Chaotic oscillations of a buckled beam. International Journal of Bifurcation and Chaos, v. 05, n. 02, p. 545-549, 1995Tradução . . Disponível em: https://doi.org/10.1142/s0218127495000430. Acesso em: 15 nov. 2024.
    • APA

      Ragazzo, C. G. (1995). Chaotic oscillations of a buckled beam. International Journal of Bifurcation and Chaos, 05( 02), 545-549. doi:10.1142/s0218127495000430
    • NLM

      Ragazzo CG. Chaotic oscillations of a buckled beam [Internet]. International Journal of Bifurcation and Chaos. 1995 ; 05( 02): 545-549.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/s0218127495000430
    • Vancouver

      Ragazzo CG. Chaotic oscillations of a buckled beam [Internet]. International Journal of Bifurcation and Chaos. 1995 ; 05( 02): 545-549.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/s0218127495000430
  • Source: International Journal of Bifurcation and Chaos. Unidades: IF, IME

    Subjects: FÍSICA MATEMÁTICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALTA, Coraci Pereira e RAGAZZO, Clodoaldo Grotta. Bifurcation structure of scalar differential delayed equations. International Journal of Bifurcation and Chaos, v. 1 , n. 3 , p. 657-65, 1991Tradução . . Disponível em: https://doi.org/10.1142/S0218127491000476. Acesso em: 15 nov. 2024.
    • APA

      Malta, C. P., & Ragazzo, C. G. (1991). Bifurcation structure of scalar differential delayed equations. International Journal of Bifurcation and Chaos, 1 ( 3 ), 657-65. doi:10.1142/S0218127491000476
    • NLM

      Malta CP, Ragazzo CG. Bifurcation structure of scalar differential delayed equations [Internet]. International Journal of Bifurcation and Chaos. 1991 ; 1 ( 3 ): 657-65.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127491000476
    • Vancouver

      Malta CP, Ragazzo CG. Bifurcation structure of scalar differential delayed equations [Internet]. International Journal of Bifurcation and Chaos. 1991 ; 1 ( 3 ): 657-65.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127491000476

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024