Filtros : "Singapura" "Financiamento AGAUR" Removidos: "Indexado no MathR" "kz" "FORP" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 15 nov. 2024.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: VETORES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. Limit cycles on piecewise smooth vector fields with coupled rigid centers. International Journal of Bifurcation and Chaos, v. 31, n. 15, p. [19] , 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218127421502242. Acesso em: 15 nov. 2024.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2021). Limit cycles on piecewise smooth vector fields with coupled rigid centers. International Journal of Bifurcation and Chaos, 31( 15), [19] . doi:10.1142/S0218127421502242
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. Limit cycles on piecewise smooth vector fields with coupled rigid centers [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 15): [19] .[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127421502242
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. Limit cycles on piecewise smooth vector fields with coupled rigid centers [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 15): [19] .[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127421502242

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024