Filtros : "SINGULARIDADES" "Singapura" Removidos: "Indexado no MathR" "kz" "FORP" Limpar

Filtros



Refine with date range


  • Source: Reviews in Mathematical Physics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUÂNTICA DE CAMPO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O’CARROLL, Michael. On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2, 3, 4. Reviews in Mathematical Physics, v. 33, p. 2350004-1-2350004-55, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0129055X23500046. Acesso em: 15 nov. 2024.
    • APA

      Faria da Veiga, P. A., & O’Carroll, M. (2023). On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2, 3, 4. Reviews in Mathematical Physics, 33, 2350004-1-2350004-55. doi:10.1142/S0129055X23500046
    • NLM

      Faria da Veiga PA, O’Carroll M. On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2, 3, 4 [Internet]. Reviews in Mathematical Physics. 2023 ; 33 2350004-1-2350004-55.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129055X23500046
    • Vancouver

      Faria da Veiga PA, O’Carroll M. On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2, 3, 4 [Internet]. Reviews in Mathematical Physics. 2023 ; 33 2350004-1-2350004-55.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129055X23500046
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, ESPAÇOS ANALÍTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRULHA JÚNIOR, Nivaldo de Góes e RUIZ, Camila Machado e SANTANA, Hellen. The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics, v. 33, n. 4, p. 2250029-1-2250029-17, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0129167X2250029X. Acesso em: 15 nov. 2024.
    • APA

      Grulha Júnior, N. de G., Ruiz, C. M., & Santana, H. (2022). The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics, 33( 4), 2250029-1-2250029-17. doi:10.1142/S0129167X2250029X
    • NLM

      Grulha Júnior N de G, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map [Internet]. International Journal of Mathematics. 2022 ; 33( 4): 2250029-1-2250029-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X2250029X
    • Vancouver

      Grulha Júnior N de G, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map [Internet]. International Journal of Mathematics. 2022 ; 33( 4): 2250029-1-2250029-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X2250029X
  • Source: Journal of Algebra and its Applications. Unidade: ICMC

    Subjects: SINGULARIDADES, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHU, Lizhong e JORGE PÉREZ, Victor Hugo. The Stanley regularity of complete intersections and ideals of mixed products. Journal of Algebra and its Applications, v. 16, n. 5, p. 1750122-1-1750122-13, 2017Tradução . . Disponível em: https://doi.org/10.1142/S0219498817501225. Acesso em: 15 nov. 2024.
    • APA

      Chu, L., & Jorge Pérez, V. H. (2017). The Stanley regularity of complete intersections and ideals of mixed products. Journal of Algebra and its Applications, 16( 5), 1750122-1-1750122-13. doi:10.1142/S0219498817501225
    • NLM

      Chu L, Jorge Pérez VH. The Stanley regularity of complete intersections and ideals of mixed products [Internet]. Journal of Algebra and its Applications. 2017 ; 16( 5): 1750122-1-1750122-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219498817501225
    • Vancouver

      Chu L, Jorge Pérez VH. The Stanley regularity of complete intersections and ideals of mixed products [Internet]. Journal of Algebra and its Applications. 2017 ; 16( 5): 1750122-1-1750122-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219498817501225
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA ALGÉBRICA, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean-Paul e CHACHAPOYAS, Nancy e RUAS, Maria Aparecida Soares. Generic sections of essentially isolated determinantal singularities. International Journal of Mathematics, v. 28, n. 11, p. 1750083-1-1750083-13, 2017Tradução . . Disponível em: https://doi.org/10.1142/S0129167X17500835. Acesso em: 15 nov. 2024.
    • APA

      Brasselet, J. -P., Chachapoyas, N., & Ruas, M. A. S. (2017). Generic sections of essentially isolated determinantal singularities. International Journal of Mathematics, 28( 11), 1750083-1-1750083-13. doi:10.1142/S0129167X17500835
    • NLM

      Brasselet J-P, Chachapoyas N, Ruas MAS. Generic sections of essentially isolated determinantal singularities [Internet]. International Journal of Mathematics. 2017 ; 28( 11): 1750083-1-1750083-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X17500835
    • Vancouver

      Brasselet J-P, Chachapoyas N, Ruas MAS. Generic sections of essentially isolated determinantal singularities [Internet]. International Journal of Mathematics. 2017 ; 28( 11): 1750083-1-1750083-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X17500835
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS, INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, v. 26, n. 11, p. 1650188-1-1650188-26, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218127416501881. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2016). Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, 26( 11), 1650188-1-1650188-26. doi:10.1142/S0218127416501881
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416501881
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416501881
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Chaotic behavior of a generalized Sprott E differential system. International Journal of Bifurcation and Chaos, v. 26, n. 5, p. 1650083-1-1650083-16, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218127416500838. Acesso em: 15 nov. 2024.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2016). Chaotic behavior of a generalized Sprott E differential system. International Journal of Bifurcation and Chaos, 26( 5), 1650083-1-1650083-16. doi:10.1142/S0218127416500838
    • NLM

      Oliveira RD dos S, Valls C. Chaotic behavior of a generalized Sprott E differential system [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 5): 1650083-1-1650083-16.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416500838
    • Vancouver

      Oliveira RD dos S, Valls C. Chaotic behavior of a generalized Sprott E differential system [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 5): 1650083-1-1650083-16.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127416500838
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, v. 17, n. 3, p. 1450018-1-1450018-17, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0219199714500187. Acesso em: 15 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2015). Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, 17( 3), 1450018-1-1450018-17. doi:10.1142/S0219199714500187
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199714500187
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199714500187
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C). International Journal of Bifurcation and Chaos, v. 25, n. 3, p. 1530009-1-1530009-111, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218127415300098. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2015). The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C). International Journal of Bifurcation and Chaos, 25( 3), 1530009-1-1530009-111. doi:10.1142/S0218127415300098
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C) [Internet]. International Journal of Bifurcation and Chaos. 2015 ; 25( 3): 1530009-1-1530009-111.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127415300098
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (C) [Internet]. International Journal of Bifurcation and Chaos. 2015 ; 25( 3): 1530009-1-1530009-111.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127415300098
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, v. 24, n. 4, p. 1450044-1-1450044-30, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218127414500448. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2014). The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, 24( 4), 1450044-1-1450044-30. doi:10.1142/S0218127414500448
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127414500448
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0218127414500448
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CISNEROS-MOLINA, José Luis e SEADE, José e GRULHA JÚNIOR, Nivaldo de Góes. On the topology of real analytic maps. International Journal of Mathematics, v. 25, n. 7, p. 1450069-1-1450069-30, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0129167X14500694. Acesso em: 15 nov. 2024.
    • APA

      Cisneros-Molina, J. L., Seade, J., & Grulha Júnior, N. de G. (2014). On the topology of real analytic maps. International Journal of Mathematics, 25( 7), 1450069-1-1450069-30. doi:10.1142/S0129167X14500694
    • NLM

      Cisneros-Molina JL, Seade J, Grulha Júnior N de G. On the topology of real analytic maps [Internet]. International Journal of Mathematics. 2014 ; 25( 7): 1450069-1-1450069-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X14500694
    • Vancouver

      Cisneros-Molina JL, Seade J, Grulha Júnior N de G. On the topology of real analytic maps [Internet]. International Journal of Mathematics. 2014 ; 25( 7): 1450069-1-1450069-30.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0129167X14500694
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, v. 23, n. 8, p. 1350140-1-1350140-21, 2013Tradução . . Disponível em: https://doi.org/10.1142/S021812741350140X. Acesso em: 15 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2013). Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, 23( 8), 1350140-1-1350140-21. doi:10.1142/S021812741350140X
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021812741350140X
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S021812741350140X
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SINGULARIDADES, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS, SISTEMAS DINÂMICOS, SUPERFÍCIES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO-FUSTER, M. C e RUAS, Maria Aparecida Soares e TARI, Farid. Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, v. 10, n. 3, p. 309-335, 2008Tradução . . Disponível em: https://doi.org/10.1142/S0219199708002806. Acesso em: 15 nov. 2024.
    • APA

      Romero-Fuster, M. C., Ruas, M. A. S., & Tari, F. (2008). Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, 10( 3), 309-335. doi:10.1142/S0219199708002806
    • NLM

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199708002806
    • Vancouver

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1142/S0219199708002806
  • Source: International Journal of Mathematics. Unidade: ICMC

    Assunto: SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e SAIA, Marcelo José. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n. International Journal of Mathematics, v. 17, n. 8, p. 887-903, 2006Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Jorge Pérez, V. H., & Saia, M. J. (2006). Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),nInternational Journal of Mathematics, 17( 8), 887-903.
    • NLM

      Jorge Pérez VH, Saia MJ. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n
    • Vancouver

      Jorge Pérez VH, Saia MJ. Euler obstruction, polar multiplicities and equisingularity of map germs in O(n,p),n

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024