Filtros : "Financiado pelo FEDER" "IME" Removidos: " IFSC224" "NEOPLASIAS" "Proceedings of Science" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e FREITAS, Ana Cristina Moreira e FREITAS, Jorge Milhazes. Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, v. 32, p. 4853-4870, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab37b8. Acesso em: 31 out. 2024.
    • APA

      Abadi, M. N., Freitas, A. C. M., & Freitas, J. M. (2019). Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, 32, 4853-4870. doi:10.1088/1361-6544/ab37b8
    • NLM

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
    • Vancouver

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS VETORIAIS TOPOLÓGICOS, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Maria D et al. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, v. 95, p. 323-332, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.09.011. Acesso em: 31 out. 2024.
    • APA

      Acosta, M. D., Becerra Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., et al. (2014). The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, 95, 323-332. doi:10.1016/j.na.2013.09.011
    • NLM

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
    • Vancouver

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE VARIACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARDO, Rosa e PEREIRA, Antônio Luiz e SABINA DE LIS, Jose C. The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.08.049. Acesso em: 31 out. 2024.
    • APA

      Pardo, R., Pereira, A. L., & Sabina de Lis, J. C. (2012). The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations. doi:10.1016/j.jde.2011.08.049
    • NLM

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
    • Vancouver

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024