Fonte: International Journal of Bifurcation and Chaos. Unidade: ICMC
Assuntos: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES
ABNT
ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A). International Journal of Bifurcation and Chaos, v. 31, n. 2, p. 2150026-1-2150026-24, 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218127421500267. Acesso em: 18 nov. 2024.APA
Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A). International Journal of Bifurcation and Chaos, 31( 2), 2150026-1-2150026-24. doi:10.1142/S0218127421500267NLM
Artés JC, Mota MC, Rezende AC. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A) [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 2): 2150026-1-2150026-24.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0218127421500267Vancouver
Artés JC, Mota MC, Rezende AC. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A) [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 2): 2150026-1-2150026-24.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0218127421500267