Filtros : "Polônia" "Singapura" Removidos: "IFSC224" "1967" "Folha de São Paulo" "Roca" Limpar

Filtros



Refine with date range


  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: DEFORMAÇÕES DE SINGULARIDADES, SUPERFÍCIES ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EYRAL, Christophe e RUAS, Maria Aparecida Soares. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, v. 30, n. 10, p. 1950053-1-1950053-17, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0129167X19500538. Acesso em: 18 nov. 2024.
    • APA

      Eyral, C., & Ruas, M. A. S. (2019). On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, 30( 10), 1950053-1-1950053-17. doi:10.1142/S0129167X19500538
    • NLM

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0129167X19500538
    • Vancouver

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0129167X19500538
  • Source: Proceedings: algebraic topology and related topics. Conference titles: East Asian Conference on Algebraic Topology - EACAT. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, GRUPOS DE WHITEHEAD

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e PETER WONG,. Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. 2019, Anais.. Singapore: Birkhäuser, 2019. Disponível em: https://doi.org/10.1007/978-981-13-5742-8_7. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Peter Wong,. (2019). Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. In Proceedings: algebraic topology and related topics. Singapore: Birkhäuser. doi:10.1007/978-981-13-5742-8_7
    • NLM

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
    • Vancouver

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEL'SHTYN, Alexander e GONÇALVES, Daciberg Lima. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime. International Journal of Algebra and Computation, v. 21, n. 3, p. 505-520, 2011Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297. Acesso em: 18 nov. 2024.
    • APA

      Fel'shtyn, A., & Gonçalves, D. L. (2011). Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime. International Journal of Algebra and Computation, 21( 3), 505-520. doi:10.1142/S0218196711006297
    • NLM

      Fel'shtyn A, Gonçalves DL. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 3): 505-520.[citado 2024 nov. 18 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297
    • Vancouver

      Fel'shtyn A, Gonçalves DL. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 3): 505-520.[citado 2024 nov. 18 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024