Filtros : "Polônia" "IME-MAT" Removidos: "Harvard University (HU)" "1967" "Folha de São Paulo" "Roca" Limpar

Filtros



Refine with date range


  • Source: Algebras and Representation Theory. Unidade: IME

    Subjects: FUNÇÕES ALGÉBRICAS, TEORIA DA REPRESENTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARES, Edson Ribeiro e MARCOS, Eduardo do Nascimento e MELTZER, Hagen. On the braid group action on exceptional sequences for weighted projective lines. Algebras and Representation Theory, v. 27, n. 1, p. 897-909, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10468-023-10243-9. Acesso em: 18 nov. 2024.
    • APA

      Alvares, E. R., Marcos, E. do N., & Meltzer, H. (2024). On the braid group action on exceptional sequences for weighted projective lines. Algebras and Representation Theory, 27( 1), 897-909. doi:10.1007/s10468-023-10243-9
    • NLM

      Alvares ER, Marcos E do N, Meltzer H. On the braid group action on exceptional sequences for weighted projective lines [Internet]. Algebras and Representation Theory. 2024 ; 27( 1): 897-909.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10468-023-10243-9
    • Vancouver

      Alvares ER, Marcos E do N, Meltzer H. On the braid group action on exceptional sequences for weighted projective lines [Internet]. Algebras and Representation Theory. 2024 ; 27( 1): 897-909.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10468-023-10243-9
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GASIŃSKI, Leszek e SANTOS JÚNIOR, João R. e SICILIANO, Gaetano. Positive solutions for a class of nonlocal problems with possibly singular nonlinearity. Journal of Fixed Point Theory and Applications, v. 24, n. artigo 65, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11784-022-00982-5. Acesso em: 18 nov. 2024.
    • APA

      Gasiński, L., Santos Júnior, J. R., & Siciliano, G. (2022). Positive solutions for a class of nonlocal problems with possibly singular nonlinearity. Journal of Fixed Point Theory and Applications, 24( artigo 65), 1-15. doi:10.1007/s11784-022-00982-5
    • NLM

      Gasiński L, Santos Júnior JR, Siciliano G. Positive solutions for a class of nonlocal problems with possibly singular nonlinearity [Internet]. Journal of Fixed Point Theory and Applications. 2022 ; 24( artigo 65): 1-15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11784-022-00982-5
    • Vancouver

      Gasiński L, Santos Júnior JR, Siciliano G. Positive solutions for a class of nonlocal problems with possibly singular nonlinearity [Internet]. Journal of Fixed Point Theory and Applications. 2022 ; 24( artigo 65): 1-15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11784-022-00982-5
  • Source: Zeitschrift für angewandte Mathematik und Physik. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, GEOMETRIA DIFERENCIAL, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir et al. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, v. 72, n. 3, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00033-021-01562-2. Acesso em: 18 nov. 2024.
    • APA

      Grebenev, V., Grichkov, A., Oberlack, M., & Waclawczyk, M. (2021). Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, 72( 3), 1-14. doi:10.1007/s00033-021-01562-2
    • NLM

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 3): 1-14.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
    • Vancouver

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 3): 1-14.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
  • Source: Proceedings: algebraic topology and related topics. Conference titles: East Asian Conference on Algebraic Topology - EACAT. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, GRUPOS DE WHITEHEAD

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e PETER WONG,. Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. 2019, Anais.. Singapore: Birkhäuser, 2019. Disponível em: https://doi.org/10.1007/978-981-13-5742-8_7. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Peter Wong,. (2019). Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. In Proceedings: algebraic topology and related topics. Singapore: Birkhäuser. doi:10.1007/978-981-13-5742-8_7
    • NLM

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
    • Vancouver

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: GRUPOS DE TRANSFORMAÇÃO, GRUPOS FINITOS, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e JIMENEZ, Rolando. Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, v. 61, n. 2, p. 305-327, 2018Tradução . . Disponível em: https://doi.org/10.1017/s0013091517000207. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Jimenez, R. (2018). Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, 61( 2), 305-327. doi:10.1017/s0013091517000207
    • NLM

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/s0013091517000207
    • Vancouver

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/s0013091517000207
  • Source: Journal of Homotopy and Related Structures. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, v. 12, n. 3, p. 707-726, 2017Tradução . . Disponível em: https://doi.org/10.1007/s40062-016-0145-z. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. (2017). On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, 12( 3), 707-726. doi:10.1007%2Fs40062-016-0145-z
    • NLM

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40062-016-0145-z
    • Vancouver

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40062-016-0145-z
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOŁUBOWSKI, Waldemar e KASHUBA, Iryna e ŻUREK, Sebastian. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, v. 45, n. 11, p. 4679-4685, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2016.1277388. Acesso em: 18 nov. 2024.
    • APA

      Hołubowski, W., Kashuba, I., & Żurek, S. (2017). Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, 45( 11), 4679-4685. doi:10.1080/00927872.2016.1277388
    • NLM

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1080/00927872.2016.1277388
    • Vancouver

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1080/00927872.2016.1277388
  • Source: Boletín de la Sociedad Matemática Mexicana. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAREK GOLASIŃSKI, e GONÇALVES, Daciberg Lima e JOHN GUASCHI,. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, v. 23, n. 1, p. 457-485, 2017Tradução . . Disponível em: https://doi.org/10.1007/s40590-016-0150-6. Acesso em: 18 nov. 2024.
    • APA

      Marek Golasiński,, Gonçalves, D. L., & John Guaschi,. (2017). On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, 23( 1), 457-485. doi:10.1007/s40590-016-0150-6
    • NLM

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40590-016-0150-6
    • Vancouver

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40590-016-0150-6
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ÁLGEBRAS DE BOOLE, INDEPENDÊNCIA E CONSISTÊNCIA, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr. An isometrically universal Banach space induced by a non-universal Boolean algebra. Proceedings of the American Mathematical Society, v. 144, n. 5, p. 2029-2036, 2016Tradução . . Disponível em: https://doi.org/10.1090/proc/12862. Acesso em: 18 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. (2016). An isometrically universal Banach space induced by a non-universal Boolean algebra. Proceedings of the American Mathematical Society, 144( 5), 2029-2036. doi:10.1090/proc/12862
    • NLM

      Brech C, Koszmider P. An isometrically universal Banach space induced by a non-universal Boolean algebra [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 5): 2029-2036.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/12862
    • Vancouver

      Brech C, Koszmider P. An isometrically universal Banach space induced by a non-universal Boolean algebra [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 5): 2029-2036.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/12862
  • Source: Journal of Homotopy and Related Structures. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2. Journal of Homotopy and Related Structures, v. 11, n. 4, p. 803-824, 2016Tradução . . Disponível em: https://doi.org/10.1007/s40062-016-0158-7. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2016). Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2. Journal of Homotopy and Related Structures, 11( 4), 803-824. doi:10.1007/s40062-016-0158-7
    • NLM

      Golasinski M, Gonçalves DL. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2 [Internet]. Journal of Homotopy and Related Structures. 2016 ; 11( 4): 803-824.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40062-016-0158-7
    • Vancouver

      Golasinski M, Gonçalves DL. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2 [Internet]. Journal of Homotopy and Related Structures. 2016 ; 11( 4): 803-824.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s40062-016-0158-7
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS VETORIAIS TOPOLÓGICOS, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Maria D et al. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, v. 95, p. 323-332, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.09.011. Acesso em: 18 nov. 2024.
    • APA

      Acosta, M. D., Becerra Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., et al. (2014). The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, 95, 323-332. doi:10.1016/j.na.2013.09.011
    • NLM

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
    • Vancouver

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr. On universal spaces for the class of Banach spaces whose dual balls are uniform Eberlein compacts. Proceedings of the American Mathematical Society, v. 141, n. 4, p. 1267-1280, 2013Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2012-11390-5. Acesso em: 18 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. (2013). On universal spaces for the class of Banach spaces whose dual balls are uniform Eberlein compacts. Proceedings of the American Mathematical Society, 141( 4), 1267-1280. doi:10.1090/S0002-9939-2012-11390-5
    • NLM

      Brech C, Koszmider P. On universal spaces for the class of Banach spaces whose dual balls are uniform Eberlein compacts [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 4): 1267-1280.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11390-5
    • Vancouver

      Brech C, Koszmider P. On universal spaces for the class of Banach spaces whose dual balls are uniform Eberlein compacts [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 4): 1267-1280.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11390-5
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GŁAB, Szymon e KAUFMANN, Pedro Levit e PELLEGRINI, Leonardo. Spaceability and algebrability of sets of nowhere integrable functions. Proceedings of the American Mathematical Society, v. 141, n. 6, p. 2025-2037, 2013Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2012-11574-6. Acesso em: 18 nov. 2024.
    • APA

      Głab, S., Kaufmann, P. L., & Pellegrini, L. (2013). Spaceability and algebrability of sets of nowhere integrable functions. Proceedings of the American Mathematical Society, 141( 6), 2025-2037. doi:10.1090/S0002-9939-2012-11574-6
    • NLM

      Głab S, Kaufmann PL, Pellegrini L. Spaceability and algebrability of sets of nowhere integrable functions [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 6): 2025-2037.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11574-6
    • Vancouver

      Głab S, Kaufmann PL, Pellegrini L. Spaceability and algebrability of sets of nowhere integrable functions [Internet]. Proceedings of the American Mathematical Society. 2013 ; 141( 6): 2025-2037.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11574-6
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr Boleslaw. On universal Banach spaces of density continuum. Israel Journal of Mathematics, v. 190, 2012Tradução . . Disponível em: https://doi.org/10.1007/s11856-011-0183-5. Acesso em: 18 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. B. (2012). On universal Banach spaces of density continuum. Israel Journal of Mathematics, 190. doi:10.1007/s11856-011-0183-5
    • NLM

      Brech C, Koszmider PB. On universal Banach spaces of density continuum [Internet]. Israel Journal of Mathematics. 2012 ; 190[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11856-011-0183-5
    • Vancouver

      Brech C, Koszmider PB. On universal Banach spaces of density continuum [Internet]. Israel Journal of Mathematics. 2012 ; 190[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11856-011-0183-5
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Subjects: ESPAÇOS TOPOLÓGICOS, TEORIA DOS CONJUNTOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr. Thin-very tall compact scattered spaces which are hereditarily separable. Transactions of the American Mathematical Society, v. 363, n. 01, p. 501-501, 2011Tradução . . Disponível em: https://doi.org/10.1090/s0002-9947-2010-05149-9. Acesso em: 18 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. (2011). Thin-very tall compact scattered spaces which are hereditarily separable. Transactions of the American Mathematical Society, 363( 01), 501-501. doi:10.1090/s0002-9947-2010-05149-9
    • NLM

      Brech C, Koszmider P. Thin-very tall compact scattered spaces which are hereditarily separable [Internet]. Transactions of the American Mathematical Society. 2011 ; 363( 01): 501-501.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/s0002-9947-2010-05149-9
    • Vancouver

      Brech C, Koszmider P. Thin-very tall compact scattered spaces which are hereditarily separable [Internet]. Transactions of the American Mathematical Society. 2011 ; 363( 01): 501-501.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/s0002-9947-2010-05149-9
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, TEORIA DOS CONJUNTOS, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr. On biorthogonal systems whose functionals are finitely supported. Fundamenta Mathematicae, v. 213, n. 1, p. 43-66, 2011Tradução . . Disponível em: https://doi.org/10.4064/fm213-1-3. Acesso em: 18 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. (2011). On biorthogonal systems whose functionals are finitely supported. Fundamenta Mathematicae, 213( 1), 43-66. doi:10.4064/fm213-1-3
    • NLM

      Brech C, Koszmider P. On biorthogonal systems whose functionals are finitely supported [Internet]. Fundamenta Mathematicae. 2011 ; 213( 1): 43-66.[citado 2024 nov. 18 ] Available from: https://doi.org/10.4064/fm213-1-3
    • Vancouver

      Brech C, Koszmider P. On biorthogonal systems whose functionals are finitely supported [Internet]. Fundamenta Mathematicae. 2011 ; 213( 1): 43-66.[citado 2024 nov. 18 ] Available from: https://doi.org/10.4064/fm213-1-3
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEL'SHTYN, Alexander e GONÇALVES, Daciberg Lima. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime. International Journal of Algebra and Computation, v. 21, n. 3, p. 505-520, 2011Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297. Acesso em: 18 nov. 2024.
    • APA

      Fel'shtyn, A., & Gonçalves, D. L. (2011). Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime. International Journal of Algebra and Computation, 21( 3), 505-520. doi:10.1142/S0218196711006297
    • NLM

      Fel'shtyn A, Gonçalves DL. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 3): 505-520.[citado 2024 nov. 18 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297
    • Vancouver

      Fel'shtyn A, Gonçalves DL. Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 3): 505-520.[citado 2024 nov. 18 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0218196711006297
  • Source: Ukrainian Mathematical Journal. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e GUBARENI, Nadezhda Mikhaæilovna e KIRICHENKO, V. V. Rings with finite decomposition of identity. Ukrainian Mathematical Journal, v. 63, n. 3, p. 369-392, 2011Tradução . . Disponível em: https://doi.org/10.1007/s11253-011-0509-9. Acesso em: 18 nov. 2024.
    • APA

      Dokuchaev, M., Gubareni, N. M., & Kirichenko, V. V. (2011). Rings with finite decomposition of identity. Ukrainian Mathematical Journal, 63( 3), 369-392. doi:10.1007/s11253-011-0509-9
    • NLM

      Dokuchaev M, Gubareni NM, Kirichenko VV. Rings with finite decomposition of identity [Internet]. Ukrainian Mathematical Journal. 2011 ; 63( 3): 369-392.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11253-011-0509-9
    • Vancouver

      Dokuchaev M, Gubareni NM, Kirichenko VV. Rings with finite decomposition of identity [Internet]. Ukrainian Mathematical Journal. 2011 ; 63( 3): 369-392.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11253-011-0509-9
  • Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e GUBARENI, Nadezhda Mikhaæilovna e KIRICHENKO, Vladimir V. Rings with finite decomposition of identity. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/2520ffe0-1b17-41cd-b3a1-ef188ceffacb/1836677.pdf. Acesso em: 18 nov. 2024. , 2010
    • APA

      Dokuchaev, M., Gubareni, N. M., & Kirichenko, V. V. (2010). Rings with finite decomposition of identity. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/2520ffe0-1b17-41cd-b3a1-ef188ceffacb/1836677.pdf
    • NLM

      Dokuchaev M, Gubareni NM, Kirichenko VV. Rings with finite decomposition of identity [Internet]. 2010 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/2520ffe0-1b17-41cd-b3a1-ef188ceffacb/1836677.pdf
    • Vancouver

      Dokuchaev M, Gubareni NM, Kirichenko VV. Rings with finite decomposition of identity [Internet]. 2010 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/2520ffe0-1b17-41cd-b3a1-ef188ceffacb/1836677.pdf
  • Source: Geometriae Dedicata. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEL'SHTYN, Alexander e GONÇALVES, Daciberg Lima. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani). Geometriae Dedicata, v. 146, n. 1, p. 211-223, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10711-009-9434-6. Acesso em: 18 nov. 2024.
    • APA

      Fel'shtyn, A., & Gonçalves, D. L. (2010). Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani). Geometriae Dedicata, 146( 1), 211-223. doi:10.1007/s10711-009-9434-6
    • NLM

      Fel'shtyn A, Gonçalves DL. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani) [Internet]. Geometriae Dedicata. 2010 ; 146( 1): 211-223.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10711-009-9434-6
    • Vancouver

      Fel'shtyn A, Gonçalves DL. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani) [Internet]. Geometriae Dedicata. 2010 ; 146( 1): 211-223.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10711-009-9434-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024