Filtros : "Polônia" "Golasiński, Marek" Removidos: "1967" "2022" "Folha de São Paulo" "Roca" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107567. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Proceedings: algebraic topology and related topics. Conference titles: East Asian Conference on Algebraic Topology - EACAT. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, GRUPOS DE WHITEHEAD

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e PETER WONG,. Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. 2019, Anais.. Singapore: Birkhäuser, 2019. Disponível em: https://doi.org/10.1007/978-981-13-5742-8_7. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Peter Wong,. (2019). Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. In Proceedings: algebraic topology and related topics. Singapore: Birkhäuser. doi:10.1007/978-981-13-5742-8_7
    • NLM

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
    • Vancouver

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
  • Source: Mathematica Slovaca. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima. On automorphisms of finite Abelian p-groups. Mathematica Slovaca, v. 58, n. 4, p. 405-412, 2008Tradução . . Disponível em: https://doi.org/10.2478/s12175-008-0084-1. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., & Gonçalves, D. L. (2008). On automorphisms of finite Abelian p-groups. Mathematica Slovaca, 58( 4), 405-412. doi:10.2478/s12175-008-0084-1
    • NLM

      Golasiński M, Gonçalves DL. On automorphisms of finite Abelian p-groups [Internet]. Mathematica Slovaca. 2008 ; 58( 4): 405-412.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2478/s12175-008-0084-1
    • Vancouver

      Golasiński M, Gonçalves DL. On automorphisms of finite Abelian p-groups [Internet]. Mathematica Slovaca. 2008 ; 58( 4): 405-412.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2478/s12175-008-0084-1
  • Source: Ukrainian Mathematical Journal. Unidade: IME

    Assunto: GRUPOS DE HOMOTOPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. Generalizations of fox homotopy groups, Whitehead products, and Gottlieb groups. Ukrainian Mathematical Journal, v. 57, n. 3, p. 382-393, 2005Tradução . . Disponível em: https://doi.org/10.1007/s11253-005-0197-4. Acesso em: 18 nov. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2005). Generalizations of fox homotopy groups, Whitehead products, and Gottlieb groups. Ukrainian Mathematical Journal, 57( 3), 382-393. doi:10.1007/s11253-005-0197-4
    • NLM

      Golasiński M, Gonçalves DL, Wong P. Generalizations of fox homotopy groups, Whitehead products, and Gottlieb groups [Internet]. Ukrainian Mathematical Journal. 2005 ; 57( 3): 382-393.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11253-005-0197-4
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. Generalizations of fox homotopy groups, Whitehead products, and Gottlieb groups [Internet]. Ukrainian Mathematical Journal. 2005 ; 57( 3): 382-393.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11253-005-0197-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024