A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NITSCHKE, Marcia e MARANGON, Crisiane Aparecida. Microbial surfactants in nanotechnology: recent trends and applications. Critical Reviews in Biotechnology, v. 42, n. 2, p. 294-310, 2022Tradução . . Disponível em: https://doi.org/10.1080/07388551.2021.1933890. Acesso em: 10 nov. 2024.
APA
Nitschke, M., & Marangon, C. A. (2022). Microbial surfactants in nanotechnology: recent trends and applications. Critical Reviews in Biotechnology, 42( 2), 294-310. doi:10.1080/07388551.2021.1933890
NLM
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications [Internet]. Critical Reviews in Biotechnology. 2022 ; 42( 2): 294-310.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/07388551.2021.1933890
Vancouver
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications [Internet]. Critical Reviews in Biotechnology. 2022 ; 42( 2): 294-310.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/07388551.2021.1933890
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS, Luiz Fernando dos et al. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter, v. 624, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.physb.2021.413447. Acesso em: 10 nov. 2024.
APA
Santos, L. F. dos, Martins, J. C., Lima, K. de O., Gomes, L. F. T., Melo, M. T. de, Tedesco, A. C., et al. (2022). In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter, 624. doi:10.1016/j.physb.2021.413447
NLM
Santos LF dos, Martins JC, Lima K de O, Gomes LFT, Melo MT de, Tedesco AC, Carlos LD, Ferreira RAS, Gonçalves RR. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications [Internet]. Physica B: Condensed Matter. 2022 ; 624[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.physb.2021.413447
Vancouver
Santos LF dos, Martins JC, Lima K de O, Gomes LFT, Melo MT de, Tedesco AC, Carlos LD, Ferreira RAS, Gonçalves RR. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications [Internet]. Physica B: Condensed Matter. 2022 ; 624[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.physb.2021.413447
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OGUNJIMI, Abayomi Tolulope e CHAHUD, Fernando e LOPEZ, Renata Fonseca Vianna. Isotretinoin-Delonix polymeric nanoparticles: potentials for skin follicular targeting in acne treatment. International Journal of Pharmaceutics, v. 610, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ijpharm.2021.121217. Acesso em: 10 nov. 2024.
APA
Ogunjimi, A. T., Chahud, F., & Lopez, R. F. V. (2021). Isotretinoin-Delonix polymeric nanoparticles: potentials for skin follicular targeting in acne treatment. International Journal of Pharmaceutics, 610, 1-12. doi:10.1016/j.ijpharm.2021.121217
NLM
Ogunjimi AT, Chahud F, Lopez RFV. Isotretinoin-Delonix polymeric nanoparticles: potentials for skin follicular targeting in acne treatment [Internet]. International Journal of Pharmaceutics. 2021 ; 610 1-12.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.ijpharm.2021.121217
Vancouver
Ogunjimi AT, Chahud F, Lopez RFV. Isotretinoin-Delonix polymeric nanoparticles: potentials for skin follicular targeting in acne treatment [Internet]. International Journal of Pharmaceutics. 2021 ; 610 1-12.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.ijpharm.2021.121217
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUZA, Lilian Rodrigues Rosa et al. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Environmental Science and Pollution Research, v. 28, n. 13, p. 16720-16733, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11356-020-11862-1. Acesso em: 10 nov. 2024.
APA
Souza, L. R. R., Corrêa, T. Z., Bruni, A. T., & Veiga, M. A. M. S. da. (2021). The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Environmental Science and Pollution Research, 28( 13), 16720-16733. doi:10.1007/s11356-020-11862-1
NLM
Souza LRR, Corrêa TZ, Bruni AT, Veiga MAMS da. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor [Internet]. Environmental Science and Pollution Research. 2021 ; 28( 13): 16720-16733.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s11356-020-11862-1
Vancouver
Souza LRR, Corrêa TZ, Bruni AT, Veiga MAMS da. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor [Internet]. Environmental Science and Pollution Research. 2021 ; 28( 13): 16720-16733.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s11356-020-11862-1
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BOTTEON, Caroline Eloisa Apolinário et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Scientific Reports, v. 11, n. 1, 2021Tradução . . Disponível em: https://doi.org/10.1038/s41598-021-81281-w. Acesso em: 10 nov. 2024.
APA
Botteon, C. E. A., Silva, L. B., Ccana-Ccapatinta, G. V., Silva, T. S., Ambrosio, S. R., Veneziani, R. C. S., et al. (2021). Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Scientific Reports, 11( 1). doi:10.1038/s41598-021-81281-w
NLM
Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities [Internet]. Scientific Reports. 2021 ; 11( 1):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1038/s41598-021-81281-w
Vancouver
Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities [Internet]. Scientific Reports. 2021 ; 11( 1):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1038/s41598-021-81281-w
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TAKAMIYA, Aline Satie et al. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering: C, v. 118, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.msec.2020.111341. Acesso em: 10 nov. 2024.
APA
Takamiya, A. S., Monteiro, D. R., Gorup, L. F., Silva, E. A., Camargo, E. R. de, Gomes-Filho, J. E., et al. (2021). Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering: C, 118. doi:10.1016/j.msec.2020.111341
NLM
Takamiya AS, Monteiro DR, Gorup LF, Silva EA, Camargo ER de, Gomes-Filho JE, Oliveira SHP de, Barbosa DB. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm [Internet]. Materials Science and Engineering: C. 2021 ; 118[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.msec.2020.111341
Vancouver
Takamiya AS, Monteiro DR, Gorup LF, Silva EA, Camargo ER de, Gomes-Filho JE, Oliveira SHP de, Barbosa DB. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm [Internet]. Materials Science and Engineering: C. 2021 ; 118[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.msec.2020.111341
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
RASPANTINI, Giovanni Loureiro et al. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: development, physicochemical and biological characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 627, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfa.2021.127144. Acesso em: 10 nov. 2024.
APA
Raspantini, G. L., Luiz, M. T., Abriata, J. P., Eloy, J. de O., Vaidergorn, M. M., Emery, F. da S., & Marchetti, J. M. (2021). PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: development, physicochemical and biological characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 1-11. doi:10.1016/j.colsurfa.2021.127144
NLM
Raspantini GL, Luiz MT, Abriata JP, Eloy J de O, Vaidergorn MM, Emery F da S, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: development, physicochemical and biological characterization [Internet]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021 ; 627 1-11.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.colsurfa.2021.127144
Vancouver
Raspantini GL, Luiz MT, Abriata JP, Eloy J de O, Vaidergorn MM, Emery F da S, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: development, physicochemical and biological characterization [Internet]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021 ; 627 1-11.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.colsurfa.2021.127144
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
REGO, Gabriel N. A. et al. Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study. International Journal of Molecular Sciences, v. 21, n. 3, p. 1-31, 2020Tradução . . Disponível em: https://doi.org/10.3390/ijms21030958. Acesso em: 10 nov. 2024.
APA
Rego, G. N. A., Silva, M. P. N. da, Mamani, J. B., Oliveira, F. A., Marti, L. C., Filgueiras, I. S., et al. (2020). Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study. International Journal of Molecular Sciences, 21( 3), 1-31. doi:10.3390/ijms21030958
NLM
Rego GNA, Silva MPN da, Mamani JB, Oliveira FA, Marti LC, Filgueiras IS, Ferreira JM, Gregorio CCR, Faria D de P, Espinha P, Fantacini DMC, Souza LEB de, Covas DT, Buchpiguel CA, Gamarra LF. Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study [Internet]. International Journal of Molecular Sciences. 2020 ; 21( 3): 1-31.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3390/ijms21030958
Vancouver
Rego GNA, Silva MPN da, Mamani JB, Oliveira FA, Marti LC, Filgueiras IS, Ferreira JM, Gregorio CCR, Faria D de P, Espinha P, Fantacini DMC, Souza LEB de, Covas DT, Buchpiguel CA, Gamarra LF. Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study [Internet]. International Journal of Molecular Sciences. 2020 ; 21( 3): 1-31.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3390/ijms21030958
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MAZZILLI, Mariana Ribeiro Farah et al. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. Journal of Biomaterials Science, Polymer Edition, v. 31, n. 11, p. 1457-1474, 2020Tradução . . Disponível em: https://doi.org/10.1080/09205063.2020.1760702. Acesso em: 10 nov. 2024.
APA
Mazzilli, M. R. F., Ambrósio, J. A. R., Godoy, D. da S., Abreu, A. da S., Carvalho, J. A., Beltrame Júnior, M., & Simioni, A. R. (2020). Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. Journal of Biomaterials Science, Polymer Edition, 31( 11), 1457-1474. doi:10.1080/09205063.2020.1760702
NLM
Mazzilli MRF, Ambrósio JAR, Godoy D da S, Abreu A da S, Carvalho JA, Beltrame Júnior M, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy [Internet]. Journal of Biomaterials Science, Polymer Edition. 2020 ; 31( 11): 1457-1474.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/09205063.2020.1760702
Vancouver
Mazzilli MRF, Ambrósio JAR, Godoy D da S, Abreu A da S, Carvalho JA, Beltrame Júnior M, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy [Internet]. Journal of Biomaterials Science, Polymer Edition. 2020 ; 31( 11): 1457-1474.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/09205063.2020.1760702
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CAVALCANTE, Leonardo Lobo Ribeiro et al. Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: synthesis, characterization and photoinactivation of Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy, v. 30, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.pdpdt.2020.101709. Acesso em: 10 nov. 2024.
APA
Cavalcante, L. L. R., Tedesco, A. C., Takahashi, L. A. U., Curylofo-Zotti, F. de A., Souza-Gabriel, A. E., & Corona, S. A. M. (2020). Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: synthesis, characterization and photoinactivation of Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy, 30. doi:10.1016/j.pdpdt.2020.101709
NLM
Cavalcante LLR, Tedesco AC, Takahashi LAU, Curylofo-Zotti F de A, Souza-Gabriel AE, Corona SAM. Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: synthesis, characterization and photoinactivation of Streptococcus mutans biofilm [Internet]. Photodiagnosis and Photodynamic Therapy. 2020 ; 30[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.pdpdt.2020.101709
Vancouver
Cavalcante LLR, Tedesco AC, Takahashi LAU, Curylofo-Zotti F de A, Souza-Gabriel AE, Corona SAM. Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: synthesis, characterization and photoinactivation of Streptococcus mutans biofilm [Internet]. Photodiagnosis and Photodynamic Therapy. 2020 ; 30[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.pdpdt.2020.101709
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUTO, Eliana B. et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opinion on Drug Delivery, v. 17, n. 3, p. 357-377, 2020Tradução . . Disponível em: https://doi.org/10.1080/17425247.2020.1727883. Acesso em: 10 nov. 2024.
APA
Souto, E. B., Baldim, I., Oliveira, W. P. de, Rao, R., Yadav, N., Gama, F. M., & Mahant, S. (2020). SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opinion on Drug Delivery, 17( 3), 357-377. doi:10.1080/17425247.2020.1727883
NLM
Souto EB, Baldim I, Oliveira WP de, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery [Internet]. Expert Opinion on Drug Delivery. 2020 ; 17( 3): 357-377.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/17425247.2020.1727883
Vancouver
Souto EB, Baldim I, Oliveira WP de, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery [Internet]. Expert Opinion on Drug Delivery. 2020 ; 17( 3): 357-377.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1080/17425247.2020.1727883
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CHIBAS, Leniher Castan et al. Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells. Natural Product Communications, v. 14, n. 4, p. [7] , 2019Tradução . . Disponível em: https://doi.org/10.1177/1934578x19842702. Acesso em: 10 nov. 2024.
APA
Chibas, L. C., Cintra, P. P., Moreira, M. R., Goulart, M. O., Ambrósio, S. R., Veneziani, R. C. S., et al. (2019). Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells. Natural Product Communications, 14( 4), [7] . doi:10.1177/1934578x19842702
NLM
Chibas LC, Cintra PP, Moreira MR, Goulart MO, Ambrósio SR, Veneziani RCS, Bastos JK, Santos RA dos. Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells [Internet]. Natural Product Communications. 2019 ; 14( 4): [7] .[citado 2024 nov. 10 ] Available from: https://doi.org/10.1177/1934578x19842702
Vancouver
Chibas LC, Cintra PP, Moreira MR, Goulart MO, Ambrósio SR, Veneziani RCS, Bastos JK, Santos RA dos. Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells [Internet]. Natural Product Communications. 2019 ; 14( 4): [7] .[citado 2024 nov. 10 ] Available from: https://doi.org/10.1177/1934578x19842702
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BITENCOURT, Tamires Aparecida et al. Extracellular vesicles from the dermatophyte trichophyton interdigitale modulate macrophage and keratinocyte functions. Frontiers in Immunology, v. 9, 2018Tradução . . Disponível em: https://doi.org/10.3389/fimmu.2018.02343. Acesso em: 10 nov. 2024.
APA
Bitencourt, T. A., Rezende, C. P., Quaresemin, N. R., Moreno, P., Hatanaka, O., Rossi, A., et al. (2018). Extracellular vesicles from the dermatophyte trichophyton interdigitale modulate macrophage and keratinocyte functions. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02343
NLM
Bitencourt TA, Rezende CP, Quaresemin NR, Moreno P, Hatanaka O, Rossi A, Martinez-Rossi NM, Almeida F. Extracellular vesicles from the dermatophyte trichophyton interdigitale modulate macrophage and keratinocyte functions [Internet]. Frontiers in Immunology. 2018 ; 9[citado 2024 nov. 10 ] Available from: https://doi.org/10.3389/fimmu.2018.02343
Vancouver
Bitencourt TA, Rezende CP, Quaresemin NR, Moreno P, Hatanaka O, Rossi A, Martinez-Rossi NM, Almeida F. Extracellular vesicles from the dermatophyte trichophyton interdigitale modulate macrophage and keratinocyte functions [Internet]. Frontiers in Immunology. 2018 ; 9[citado 2024 nov. 10 ] Available from: https://doi.org/10.3389/fimmu.2018.02343
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PIAZZA, Rodolfo Debone et al. mPEG-co-PCL nanoparticles: the influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces. A, v. 555, p. 142-149, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfa.2018.06.076. Acesso em: 10 nov. 2024.
APA
Piazza, R. D., Brandt, J. V., Gobo, G. G., Tedesco, A. C., Primo, F. L., Marques, R. F. C., & Jafelicci Junior, M. (2018). mPEG-co-PCL nanoparticles: the influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces. A, 555, 142-149. doi:10.1016/j.colsurfa.2018.06.076
NLM
Piazza RD, Brandt JV, Gobo GG, Tedesco AC, Primo FL, Marques RFC, Jafelicci Junior M. mPEG-co-PCL nanoparticles: the influence of hydrophobic segment on methotrexate drug delivery [Internet]. Colloids and Surfaces. A. 2018 ; 555 142-149.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.colsurfa.2018.06.076
Vancouver
Piazza RD, Brandt JV, Gobo GG, Tedesco AC, Primo FL, Marques RFC, Jafelicci Junior M. mPEG-co-PCL nanoparticles: the influence of hydrophobic segment on methotrexate drug delivery [Internet]. Colloids and Surfaces. A. 2018 ; 555 142-149.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.colsurfa.2018.06.076
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PRÓSPERO, André G. et al. Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry. Journal of Nanobiotechnology, v. 15, n. 1, 2017Tradução . . Disponível em: https://doi.org/10.1186/s12951-017-0257-6. Acesso em: 10 nov. 2024.
APA
Próspero, A. G., Quini, C. C., Bakuzis, A. F., Oliveira, P. F. de, Moretto, G. M., Mello, F. P. F., et al. (2017). Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry. Journal of Nanobiotechnology, 15( 1). doi:10.1186/s12951-017-0257-6
NLM
Próspero AG, Quini CC, Bakuzis AF, Oliveira PF de, Moretto GM, Mello FPF, Calabresi MFF, Matos RVR, Zandoná EA, Zufelato N, Oliveira RB de, Miranda JRA. Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry [Internet]. Journal of Nanobiotechnology. 2017 ; 15( 1):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1186/s12951-017-0257-6
Vancouver
Próspero AG, Quini CC, Bakuzis AF, Oliveira PF de, Moretto GM, Mello FPF, Calabresi MFF, Matos RVR, Zandoná EA, Zufelato N, Oliveira RB de, Miranda JRA. Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry [Internet]. Journal of Nanobiotechnology. 2017 ; 15( 1):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1186/s12951-017-0257-6
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ABRIATA, Juliana Palma et al. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Materials Science and Engineering: C, v. 77, p. 1196-1203, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.msec.2017.03.266. Acesso em: 10 nov. 2024.
APA
Abriata, J. P., Eloy, J. O., Riul, T. B., Campos, P. M., Baruffi, M. D., & Marchetti, J. M. (2017). Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Materials Science and Engineering: C, 77, 1196-1203. doi:10.1016/j.msec.2017.03.266
NLM
Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection [Internet]. Materials Science and Engineering: C. 2017 ; 77 1196-1203.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.msec.2017.03.266
Vancouver
Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection [Internet]. Materials Science and Engineering: C. 2017 ; 77 1196-1203.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.msec.2017.03.266
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TEIXEIRA, Ana Beatriz Vilela et al. Effect of incorporation of a new antimicrobial nanomaterial on the physical-chemical properties of endodontic sealers. Journal of Conservative Dentistry, v. 20, n. 6, p. 392-397, 2017Tradução . . Disponível em: https://doi.org/10.4103/JCD.JCD_266_17. Acesso em: 10 nov. 2024.
APA
Teixeira, A. B. V., Vidal, C. L., Castro, D. T. de, Valente, M. L. da C., Santos, C. de O., Alves, O. L., & Reis, A. C. dos. (2017). Effect of incorporation of a new antimicrobial nanomaterial on the physical-chemical properties of endodontic sealers. Journal of Conservative Dentistry, 20( 6), 392-397. doi:10.4103/JCD.JCD_266_17
NLM
Teixeira ABV, Vidal CL, Castro DT de, Valente ML da C, Santos C de O, Alves OL, Reis AC dos. Effect of incorporation of a new antimicrobial nanomaterial on the physical-chemical properties of endodontic sealers [Internet]. Journal of Conservative Dentistry. 2017 ; 20( 6): 392-397.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4103/JCD.JCD_266_17
Vancouver
Teixeira ABV, Vidal CL, Castro DT de, Valente ML da C, Santos C de O, Alves OL, Reis AC dos. Effect of incorporation of a new antimicrobial nanomaterial on the physical-chemical properties of endodontic sealers [Internet]. Journal of Conservative Dentistry. 2017 ; 20( 6): 392-397.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4103/JCD.JCD_266_17
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GIUFRIDA, Willyan Machado et al. Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology. Canadian Journal of Chemical Engineering, v. 94, n. 7, p. 1336-1341, 2016Tradução . . Disponível em: https://doi.org/10.1002/cjce.22511. Acesso em: 10 nov. 2024.
APA
Giufrida, W. M., Voll, F. A., Feihrmann, A. C., Kunita, M. H., Madureira, E. H., Guilherme, M. R., et al. (2016). Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology. Canadian Journal of Chemical Engineering, 94( 7), 1336-1341. doi:10.1002/cjce.22511
NLM
Giufrida WM, Voll FA, Feihrmann AC, Kunita MH, Madureira EH, Guilherme MR, Vedoy DRL, Cabral VF, Cardozo-Filho L. Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology [Internet]. Canadian Journal of Chemical Engineering. 2016 ; 94( 7): 1336-1341.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1002/cjce.22511
Vancouver
Giufrida WM, Voll FA, Feihrmann AC, Kunita MH, Madureira EH, Guilherme MR, Vedoy DRL, Cabral VF, Cardozo-Filho L. Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology [Internet]. Canadian Journal of Chemical Engineering. 2016 ; 94( 7): 1336-1341.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1002/cjce.22511
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUZA, Joel G et al. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. Journal of Controlled Release, v. 200, p. 115-124, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jconrel.2014.12.037. Acesso em: 10 nov. 2024.
APA
Souza, J. G., Dias, K., Silva, S. A. M., Rezende, L. C. D. de, Rocha, E. M., Emery, F. da S., & Lopez, R. F. V. (2015). Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. Journal of Controlled Release, 200, 115-124. doi:10.1016/j.jconrel.2014.12.037
NLM
Souza JG, Dias K, Silva SAM, Rezende LCD de, Rocha EM, Emery F da S, Lopez RFV. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery [Internet]. Journal of Controlled Release. 2015 ; 200 115-124.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jconrel.2014.12.037
Vancouver
Souza JG, Dias K, Silva SAM, Rezende LCD de, Rocha EM, Emery F da S, Lopez RFV. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery [Internet]. Journal of Controlled Release. 2015 ; 200 115-124.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jconrel.2014.12.037
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OAKU, Yoshihiro et al. Impact of surface coated magnetite used in magnetic drug delivery system on immune response. Journal of Applied Physics, v. 117, n. 17, p. 17D135-1 - 17D135-4, 2015Tradução . . Disponível em: https://doi.org/10.1063/1.4917265. Acesso em: 10 nov. 2024.
APA
Oaku, Y., Tamada, J., Mishima, F., Akiyama, Y., Osako, M. K., Koriyama, H., et al. (2015). Impact of surface coated magnetite used in magnetic drug delivery system on immune response. Journal of Applied Physics, 117( 17), 17D135-1 - 17D135-4. doi:10.1063/1.4917265
NLM
Oaku Y, Tamada J, Mishima F, Akiyama Y, Osako MK, Koriyama H, Nakagami H, Nishijima S. Impact of surface coated magnetite used in magnetic drug delivery system on immune response [Internet]. Journal of Applied Physics. 2015 ; 117( 17): 17D135-1 - 17D135-4.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1063/1.4917265
Vancouver
Oaku Y, Tamada J, Mishima F, Akiyama Y, Osako MK, Koriyama H, Nakagami H, Nishijima S. Impact of surface coated magnetite used in magnetic drug delivery system on immune response [Internet]. Journal of Applied Physics. 2015 ; 117( 17): 17D135-1 - 17D135-4.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1063/1.4917265