Filtros : "Hungria" "Financiado pelo NSERC, Canada" Removidos: "IDOSOS" "Hospital Sírio Libanês" "FCFRP-601" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 03 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 03 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 03 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Source: Combinatorica. Unidade: IME

    Subjects: COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAXELL, Penny E e KOHAYAKAWA, Yoshiharu e LUCZAK, Tomasz. Turán's extremal problem in random graphs: forbidding odd cycles. Combinatorica, v. 16, n. 1, p. 107-122, 1996Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/BF01300129. Acesso em: 03 nov. 2024.
    • APA

      Haxell, P. E., Kohayakawa, Y., & Luczak, T. (1996). Turán's extremal problem in random graphs: forbidding odd cycles. Combinatorica, 16( 1), 107-122. doi:10.1007%2FBF01300129
    • NLM

      Haxell PE, Kohayakawa Y, Luczak T. Turán's extremal problem in random graphs: forbidding odd cycles [Internet]. Combinatorica. 1996 ; 16( 1): 107-122.[citado 2024 nov. 03 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/BF01300129
    • Vancouver

      Haxell PE, Kohayakawa Y, Luczak T. Turán's extremal problem in random graphs: forbidding odd cycles [Internet]. Combinatorica. 1996 ; 16( 1): 107-122.[citado 2024 nov. 03 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/BF01300129

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024