Filtros : "Indexado no MathSciNet" "Financiamento PROEX/CAPES" Removido: "China" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 02 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FINAMORE, Douglas. Contact foliations and generalised Weinstein conjectures. Annals of Global Analysis and Geometry, v. 65, n. 4, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10455-024-09957-w. Acesso em: 02 nov. 2024.
    • APA

      Finamore, D. (2024). Contact foliations and generalised Weinstein conjectures. Annals of Global Analysis and Geometry, 65( 4), 1-31. doi:10.1007/s10455-024-09957-w
    • NLM

      Finamore D. Contact foliations and generalised Weinstein conjectures [Internet]. Annals of Global Analysis and Geometry. 2024 ; 65( 4): 1-31.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10455-024-09957-w
    • Vancouver

      Finamore D. Contact foliations and generalised Weinstein conjectures [Internet]. Annals of Global Analysis and Geometry. 2024 ; 65( 4): 1-31.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10455-024-09957-w
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, INVARIANTES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA-TEJEDA, Tito Alexandre. Some classes of frontals and its representation formulas. Results in Mathematics, v. 79, n. 5, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02221-4. Acesso em: 02 nov. 2024.
    • APA

      Medina-Tejeda, T. A. (2024). Some classes of frontals and its representation formulas. Results in Mathematics, 79( 5), 1-27. doi:10.1007/s00025-024-02221-4
    • NLM

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
    • Vancouver

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL, TOPOLOGIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FINAMORE, Douglas. Quasiconformal contact foliations. Mathematische Annalen, v. 389, n. 2, p. 1575-1598, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02687-7. Acesso em: 02 nov. 2024.
    • APA

      Finamore, D. (2024). Quasiconformal contact foliations. Mathematische Annalen, 389( 2), 1575-1598. doi:10.1007/s00208-023-02687-7
    • NLM

      Finamore D. Quasiconformal contact foliations [Internet]. Mathematische Annalen. 2024 ; 389( 2): 1575-1598.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00208-023-02687-7
    • Vancouver

      Finamore D. Quasiconformal contact foliations [Internet]. Mathematische Annalen. 2024 ; 389( 2): 1575-1598.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00208-023-02687-7
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 02 nov. 2024.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2024). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Monatshefte für Mathematik. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, INVARIANTES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA-TEJEDA, Tito Alexandre. Extendibility and boundedness of invariants on singularities of wavefronts. Monatshefte für Mathematik, v. 203, n. Ja 2024, p. 199-221, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00605-023-01911-5. Acesso em: 02 nov. 2024.
    • APA

      Medina-Tejeda, T. A. (2024). Extendibility and boundedness of invariants on singularities of wavefronts. Monatshefte für Mathematik, 203( Ja 2024), 199-221. doi:10.1007/s00605-023-01911-5
    • NLM

      Medina-Tejeda TA. Extendibility and boundedness of invariants on singularities of wavefronts [Internet]. Monatshefte für Mathematik. 2024 ; 203( Ja 2024): 199-221.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00605-023-01911-5
    • Vancouver

      Medina-Tejeda TA. Extendibility and boundedness of invariants on singularities of wavefronts [Internet]. Monatshefte für Mathematik. 2024 ; 203( Ja 2024): 199-221.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00605-023-01911-5
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, 2024Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2024098. Acesso em: 02 nov. 2024.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M., & Takaessu Junior, C. R. (2024). Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B. doi:https://doi.org/10.3934/dcdsb.2024098
    • NLM

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/dcdsb.2024098
    • Vancouver

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/dcdsb.2024098
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, GEOMETRIA DIFERENCIAL AFIM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Débora e RUAS, Maria Aparecida Soares e SANTOS, Igor Chagas. Singularities of 3-parameter line congruences in R⁴. Proceedings of the Royal Society of Edinburgh, v. 153, n. 3, p. 1045-1070, 2023Tradução . . Disponível em: https://doi.org/10.1017/prm.2022.41. Acesso em: 02 nov. 2024.
    • APA

      Lopes, D., Ruas, M. A. S., & Santos, I. C. (2023). Singularities of 3-parameter line congruences in R⁴. Proceedings of the Royal Society of Edinburgh, 153( 3), 1045-1070. doi:10.1017/prm.2022.41
    • NLM

      Lopes D, Ruas MAS, Santos IC. Singularities of 3-parameter line congruences in R⁴ [Internet]. Proceedings of the Royal Society of Edinburgh. 2023 ; 153( 3): 1045-1070.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/prm.2022.41
    • Vancouver

      Lopes D, Ruas MAS, Santos IC. Singularities of 3-parameter line congruences in R⁴ [Internet]. Proceedings of the Royal Society of Edinburgh. 2023 ; 153( 3): 1045-1070.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/prm.2022.41
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: TOPOLOGIA DIFERENCIAL, SINGULARIDADES, GEOMETRIA DIFERENCIAL CLÁSSICA, INVARIANTES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA-TEJEDA, Tito Alexandre. The fundamental theorem for singular surfaces with limiting tangent planes. Mathematische Nachrichten, v. 296, n. 2, p. 732-756, 2023Tradução . . Disponível em: https://doi.org/10.1002/mana.202000203. Acesso em: 02 nov. 2024.
    • APA

      Medina-Tejeda, T. A. (2023). The fundamental theorem for singular surfaces with limiting tangent planes. Mathematische Nachrichten, 296( 2), 732-756. doi:10.1002/mana.202000203
    • NLM

      Medina-Tejeda TA. The fundamental theorem for singular surfaces with limiting tangent planes [Internet]. Mathematische Nachrichten. 2023 ; 296( 2): 732-756.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/mana.202000203
    • Vancouver

      Medina-Tejeda TA. The fundamental theorem for singular surfaces with limiting tangent planes [Internet]. Mathematische Nachrichten. 2023 ; 296( 2): 732-756.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/mana.202000203
  • Source: Mathematical Modelling of Natural Phenomena. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, CÉLULAS-TRONCO, NEOPLASIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEACCI, Luca e PRIMICERIO, Mario. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, v. 18, p. 1-22, 2023Tradução . . Disponível em: https://doi.org/10.1051/mmnp/2023011. Acesso em: 02 nov. 2024.
    • APA

      Meacci, L., & Primicerio, M. (2023). Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, 18, 1-22. doi:10.1051/mmnp/2023011
    • NLM

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1051/mmnp/2023011
    • Vancouver

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1051/mmnp/2023011
  • Source: European Journal of Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida e FEDERSON, Marcia. Oscillatory solutions of differential equations with several discrete delays and generalized ODEs. European Journal of Mathematics, v. 9, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1007/s40879-023-00634-z. Acesso em: 02 nov. 2024.
    • APA

      Silva, M. A., & Federson, M. (2023). Oscillatory solutions of differential equations with several discrete delays and generalized ODEs. European Journal of Mathematics, 9( 2), 1-27. doi:10.1007/s40879-023-00634-z
    • NLM

      Silva MA, Federson M. Oscillatory solutions of differential equations with several discrete delays and generalized ODEs [Internet]. European Journal of Mathematics. 2023 ; 9( 2): 1-27.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s40879-023-00634-z
    • Vancouver

      Silva MA, Federson M. Oscillatory solutions of differential equations with several discrete delays and generalized ODEs [Internet]. European Journal of Mathematics. 2023 ; 9( 2): 1-27.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s40879-023-00634-z
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, v. 78, n. 6, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00025-023-01999-z. Acesso em: 02 nov. 2024.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M. J. M. da, & Takaessu Junior, C. R. (2023). A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, 78( 6), 1-14. doi:10.1007/s00025-023-01999-z
    • NLM

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
    • Vancouver

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
  • Source: Journal of Non-Newtonian Fluid Mechanics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, MÉTODOS NUMÉRICOS EM DINÂMICA DE FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRANÇA, Hugo Leonardo e OISHI, Cassio Machiaveli e THOMPSON, Roney L. Numerical investigation of shear-thinning and viscoelastic binary droplet collision. Journal of Non-Newtonian Fluid Mechanics, v. 302, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnnfm.2022.104750. Acesso em: 02 nov. 2024.
    • APA

      França, H. L., Oishi, C. M., & Thompson, R. L. (2022). Numerical investigation of shear-thinning and viscoelastic binary droplet collision. Journal of Non-Newtonian Fluid Mechanics, 302, 1-15. doi:10.1016/j.jnnfm.2022.104750
    • NLM

      França HL, Oishi CM, Thompson RL. Numerical investigation of shear-thinning and viscoelastic binary droplet collision [Internet]. Journal of Non-Newtonian Fluid Mechanics. 2022 ; 302 1-15.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jnnfm.2022.104750
    • Vancouver

      França HL, Oishi CM, Thompson RL. Numerical investigation of shear-thinning and viscoelastic binary droplet collision [Internet]. Journal of Non-Newtonian Fluid Mechanics. 2022 ; 302 1-15.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jnnfm.2022.104750
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 02 nov. 2024.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 02 nov. 2024.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
  • Source: Mathematica Scandinavica. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES DIFERENCIAIS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e SILVA, Alex Pereira da. Stability analysis of a delay differential Kaldor's model with government policies. Mathematica Scandinavica, v. 126, n. 1, p. 117-141, 2020Tradução . . Disponível em: https://doi.org/10.7146/math.scand.a-116243. Acesso em: 02 nov. 2024.
    • APA

      Caraballo, T., & Silva, A. P. da. (2020). Stability analysis of a delay differential Kaldor's model with government policies. Mathematica Scandinavica, 126( 1), 117-141. doi:10.7146/math.scand.a-116243
    • NLM

      Caraballo T, Silva AP da. Stability analysis of a delay differential Kaldor's model with government policies [Internet]. Mathematica Scandinavica. 2020 ; 126( 1): 117-141.[citado 2024 nov. 02 ] Available from: https://doi.org/10.7146/math.scand.a-116243
    • Vancouver

      Caraballo T, Silva AP da. Stability analysis of a delay differential Kaldor's model with government policies [Internet]. Mathematica Scandinavica. 2020 ; 126( 1): 117-141.[citado 2024 nov. 02 ] Available from: https://doi.org/10.7146/math.scand.a-116243

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024