Filtros : "Ucrânia" "Sergeichuk, Vladimir V" Removido: "2002" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TENSORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GROCHOW, Joshua A. e SERGEICHUK, Vladimir V. Wildness for tensors. Linear Algebra and its Applications, v. 566, p. 212-244, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.12.022. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Grochow, J. A., & Sergeichuk, V. V. (2019). Wildness for tensors. Linear Algebra and its Applications, 566, 212-244. doi:10.1016/j.laa.2018.12.022
    • NLM

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
    • Vancouver

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 18 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Linear Algebra and Its Applications. Unidade: IME

    Assunto: ÁLGEBRA MULTILINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M et al. Systems of subspaces of a unitary space. Linear Algebra and Its Applications, v. 438, n. 5, p. 2561-2573, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.10.038. Acesso em: 18 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Klimchuk, T., Sergeichuk, V. V., & Iusenko, K. (2013). Systems of subspaces of a unitary space. Linear Algebra and Its Applications, 438( 5), 2561-2573. doi:10.1016/j.laa.2012.10.038
    • NLM

      Bondarenko VM, Futorny V, Klimchuk T, Sergeichuk VV, Iusenko K. Systems of subspaces of a unitary space [Internet]. Linear Algebra and Its Applications. 2013 ; 438( 5): 2561-2573.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.10.038
    • Vancouver

      Bondarenko VM, Futorny V, Klimchuk T, Sergeichuk VV, Iusenko K. Systems of subspaces of a unitary space [Internet]. Linear Algebra and Its Applications. 2013 ; 438( 5): 2561-2573.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.10.038
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, v. 436, n. 7, p. 2670-2700, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.11.010. Acesso em: 18 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., & Sergeichuk, V. V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436( 7), 2670-2700. doi:10.1016/j.laa.2011.11.010
    • NLM

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
    • Vancouver

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
  • Source: Journal of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, MATRIZES, OPERADORES, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, p. 950-955, 2008Tradução . . Disponível em: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2008). Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, 950-955. Recuperado de https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 18 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 18 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
  • Source: Journal of Algebra. Unidade: IME

    Subjects: MATRIZES, FORMAS QUADRÁTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. Journal of Algebra, v. 319, n. 6, p. 2351-2371, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2008.01.002. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2008). Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. Journal of Algebra, 319( 6), 2351-2371. doi:10.1016/j.jalgebra.2008.01.002
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms [Internet]. Journal of Algebra. 2008 ; 319( 6): 2351-2371.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2008.01.002
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms [Internet]. Journal of Algebra. 2008 ; 319( 6): 2351-2371.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2008.01.002
  • Source: Positivity. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V e ZHARKO, Nadya. Positivity criteria generalizing the leading principal minors criterion. Positivity, v. 11, n. 1, p. 191-199, 2007Tradução . . Disponível em: https://doi.org/10.1007/s11117-006-2013-2. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Sergeichuk, V. V., & Zharko, N. (2007). Positivity criteria generalizing the leading principal minors criterion. Positivity, 11( 1), 191-199. doi:10.1007/s11117-006-2013-2
    • NLM

      Futorny V, Sergeichuk VV, Zharko N. Positivity criteria generalizing the leading principal minors criterion [Internet]. Positivity. 2007 ; 11( 1): 191-199.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11117-006-2013-2
    • Vancouver

      Futorny V, Sergeichuk VV, Zharko N. Positivity criteria generalizing the leading principal minors criterion [Internet]. Positivity. 2007 ; 11( 1): 191-199.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11117-006-2013-2
  • Source: Linear Algebras and its Applications. Unidade: IME

    Assunto: ESPAÇOS VETORIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Classification of sesquilinear forms with the first argument on a subspace or a factor space. Linear Algebras and its Applications, v. 424, n. 1, p. 282-303, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2007.01.004. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., & Sergeichuk, V. V. (2007). Classification of sesquilinear forms with the first argument on a subspace or a factor space. Linear Algebras and its Applications, 424( 1), 282-303. doi:10.1016/j.laa.2007.01.004
    • NLM

      Futorny V, Sergeichuk VV. Classification of sesquilinear forms with the first argument on a subspace or a factor space [Internet]. Linear Algebras and its Applications. 2007 ; 424( 1): 282-303.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2007.01.004
    • Vancouver

      Futorny V, Sergeichuk VV. Classification of sesquilinear forms with the first argument on a subspace or a factor space [Internet]. Linear Algebras and its Applications. 2007 ; 424( 1): 282-303.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2007.01.004
  • Unidade: IME

    Assunto: MATRIZES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/83c7e005-ed6a-4890-9c83-a59bdaf0c6d6/2900927.pdf. Acesso em: 18 nov. 2024. , 2007
    • APA

      Futorny, V., & Sergeichuk, V. V. (2007). Miniversal deformations of matrices of bilinear forms. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/83c7e005-ed6a-4890-9c83-a59bdaf0c6d6/2900927.pdf
    • NLM

      Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/83c7e005-ed6a-4890-9c83-a59bdaf0c6d6/2900927.pdf
    • Vancouver

      Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/83c7e005-ed6a-4890-9c83-a59bdaf0c6d6/2900927.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024