Filtros : "Alemanha" "ICMC-SMA" Removidos: "University of Michigan (UM)" "CALIL JUNIOR, CARLITO" "Annual Meeting of the American Association of Physical Anthropologists" Limpar

Filtros



Refine with date range


  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, OPERADORES DIFERENCIAIS

    Disponível em 2025-03-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel et al. Global solvability and cohomology of tube structures on compact manifolds. Mathematische Annalen, v. 390, n. 2, p. 2199-2233, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-024-02804-0. Acesso em: 15 nov. 2024.
    • APA

      Araújo, G., Ferra, I. A., Jahnke, M. R., & Ragognette, L. F. (2024). Global solvability and cohomology of tube structures on compact manifolds. Mathematische Annalen, 390( 2), 2199-2233. doi:10.1007/s00208-024-02804-0
    • NLM

      Araújo G, Ferra IA, Jahnke MR, Ragognette LF. Global solvability and cohomology of tube structures on compact manifolds [Internet]. Mathematische Annalen. 2024 ; 390( 2): 2199-2233.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00208-024-02804-0
    • Vancouver

      Araújo G, Ferra IA, Jahnke MR, Ragognette LF. Global solvability and cohomology of tube structures on compact manifolds [Internet]. Mathematische Annalen. 2024 ; 390( 2): 2199-2233.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00208-024-02804-0
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 15 nov. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188
    • NLM

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DO ÍNDICE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Partial functional differential equations and Conley index. Journal of Differential Equations, v. 366, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.015. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2023). Partial functional differential equations and Conley index. Journal of Differential Equations, 366, Se 2023. doi:10.1016/j.jde.2023.04.015
    • NLM

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
  • Source: International Mathematics Research Notices. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, PROBLEMA DE DIRICHLET

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions. International Mathematics Research Notices, v. 2022, n. 5, p. 3760-3804, 2022Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnaa233. Acesso em: 15 nov. 2024.
    • APA

      Bonheure, D., Moreira dos Santos, E., Parini, E., Tavares, H., & Weth, T. (2022). Nodal solutions for sublinear-type problems with Dirichlet boundary conditions. International Mathematics Research Notices, 2022( 5), 3760-3804. doi:10.1093/imrn/rnaa233
    • NLM

      Bonheure D, Moreira dos Santos E, Parini E, Tavares H, Weth T. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions [Internet]. International Mathematics Research Notices. 2022 ; 2022( 5): 3760-3804.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1093/imrn/rnaa233
    • Vancouver

      Bonheure D, Moreira dos Santos E, Parini E, Tavares H, Weth T. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions [Internet]. International Mathematics Research Notices. 2022 ; 2022( 5): 3760-3804.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1093/imrn/rnaa233
  • Source: IEEE Transactions on Information Theory. Unidade: ICMC

    Subjects: TEORIA DA INFORMAÇÃO, SISTEMA QUÂNTICO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRÊA, Willian Hans Goes e LAMI, Ludovico e PALAZUELOS, Carlos. Maximal gap between local and global distinguishability of bipartite quantum states. IEEE Transactions on Information Theory, v. No 2022, n. 11, p. 7306-7314, 2022Tradução . . Disponível em: https://doi.org/10.1109/TIT.2022.3186428. Acesso em: 15 nov. 2024.
    • APA

      Corrêa, W. H. G., Lami, L., & Palazuelos, C. (2022). Maximal gap between local and global distinguishability of bipartite quantum states. IEEE Transactions on Information Theory, No 2022( 11), 7306-7314. doi:10.1109/TIT.2022.3186428
    • NLM

      Corrêa WHG, Lami L, Palazuelos C. Maximal gap between local and global distinguishability of bipartite quantum states [Internet]. IEEE Transactions on Information Theory. 2022 ; No 2022( 11): 7306-7314.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1109/TIT.2022.3186428
    • Vancouver

      Corrêa WHG, Lami L, Palazuelos C. Maximal gap between local and global distinguishability of bipartite quantum states [Internet]. IEEE Transactions on Information Theory. 2022 ; No 2022( 11): 7306-7314.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1109/TIT.2022.3186428
  • Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      [Book of abstracts]. . São Carlos: ICMC-USP. Disponível em: http://summer.icmc.usp.br/summers/summer21/pg_abstract.php. Acesso em: 15 nov. 2024. , 2021
    • APA

      [Book of abstracts]. (2021). [Book of abstracts]. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer21/pg_abstract.php
    • NLM

      [Book of abstracts] [Internet]. 2021 ;[citado 2024 nov. 15 ] Available from: http://summer.icmc.usp.br/summers/summer21/pg_abstract.php
    • Vancouver

      [Book of abstracts] [Internet]. 2021 ;[citado 2024 nov. 15 ] Available from: http://summer.icmc.usp.br/summers/summer21/pg_abstract.php
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA DO ÍNDICE, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, v. 250, p. 41-62, 2020Tradução . . Disponível em: https://doi.org/10.4064/fm700-8-2019. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/fm700-8-2019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.025
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 50, n. 2, p. 741-755, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.043. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.043
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, v. 32, n. 2, p. 199-225, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463151164. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2008). On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, 32( 2), 199-225. Recuperado de https://projecteuclid.org/euclid.tmna/1463151164
    • NLM

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 nov. 15 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 nov. 15 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024