A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BRIHAYE, Yves e CONSOLE, Felipe de Carvalho Ceregatti de e HARTMANN, Betti. Inflation inside non-topological defects and scalar black holes. Symmetry, v. 13, n. Ja 2021, p. 2-1-2-13, 2021Tradução . . Disponível em: https://doi.org/10.3390/sym13010002. Acesso em: 15 nov. 2024.
APA
Brihaye, Y., Console, F. de C. C. de, & Hartmann, B. (2021). Inflation inside non-topological defects and scalar black holes. Symmetry, 13( Ja 2021), 2-1-2-13. doi:10.3390/sym13010002
NLM
Brihaye Y, Console F de CC de, Hartmann B. Inflation inside non-topological defects and scalar black holes [Internet]. Symmetry. 2021 ; 13( Ja 2021): 2-1-2-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/sym13010002
Vancouver
Brihaye Y, Console F de CC de, Hartmann B. Inflation inside non-topological defects and scalar black holes [Internet]. Symmetry. 2021 ; 13( Ja 2021): 2-1-2-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/sym13010002
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ESTRELA, Gabriel Rufino et al. Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice. Frontiers in Molecular Biosciences, v. 7, p. 10 , 2020Tradução . . Disponível em: https://doi.org/10.3389/fmolb.2020.00096. Acesso em: 15 nov. 2024.
APA
Estrela, G. R., Wasinski, F., Gregnani, M. F., Lima, L. C. F., Arruda, A. C., Morais, R. L., et al. (2020). Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice. Frontiers in Molecular Biosciences, 7, 10 . doi:10.3389/fmolb.2020.00096
NLM
Estrela GR, Wasinski F, Gregnani MF, Lima LCF, Arruda AC, Morais RL, Malheiros DMAC, Câmara NOS, Pesquero JB, Bader M, Barros CC, Araújo RC. Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice [Internet]. Frontiers in Molecular Biosciences. 2020 ; 7 10 .[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fmolb.2020.00096
Vancouver
Estrela GR, Wasinski F, Gregnani MF, Lima LCF, Arruda AC, Morais RL, Malheiros DMAC, Câmara NOS, Pesquero JB, Bader M, Barros CC, Araújo RC. Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice [Internet]. Frontiers in Molecular Biosciences. 2020 ; 7 10 .[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fmolb.2020.00096
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BOSCARDIN, Silvia Beatriz et al. Editorial: Harnessing the participation of dendritic cells in immunity and tolerance. Frontiers in Immunology. Lausanne: Instituto de Ciências Biomédicas, Universidade de São Paulo. Disponível em: https://doi.org/10.3389/fimmu.2020.595841. Acesso em: 15 nov. 2024. , 2020
APA
Boscardin, S. B., Dudziak, D., Münz, C., & Rosa, D. S. (2020). Editorial: Harnessing the participation of dendritic cells in immunity and tolerance. Frontiers in Immunology. Lausanne: Instituto de Ciências Biomédicas, Universidade de São Paulo. doi:10.3389/fimmu.2020.595841
NLM
Boscardin SB, Dudziak D, Münz C, Rosa DS. Editorial: Harnessing the participation of dendritic cells in immunity and tolerance [Internet]. Frontiers in Immunology. 2020 ; 11 4 .[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fimmu.2020.595841
Vancouver
Boscardin SB, Dudziak D, Münz C, Rosa DS. Editorial: Harnessing the participation of dendritic cells in immunity and tolerance [Internet]. Frontiers in Immunology. 2020 ; 11 4 .[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fimmu.2020.595841
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KNITSCH, Robert et al. Solid-state NMR techniques for the structural characterization of cyclic aggregates based on borane-phosphane frustrated Lewis pairs. Molecules, v. 25, n. 6, p. 1400-1-1400-39, 2020Tradução . . Disponível em: https://doi.org/10.3390/molecules25061400. Acesso em: 15 nov. 2024.
APA
Knitsch, R., Brinkkötter, M., Wiegand, T., Kehr, G., Erker, G., Hansen, M. R., & Eckert, H. (2020). Solid-state NMR techniques for the structural characterization of cyclic aggregates based on borane-phosphane frustrated Lewis pairs. Molecules, 25( 6), 1400-1-1400-39. doi:10.3390/molecules25061400
NLM
Knitsch R, Brinkkötter M, Wiegand T, Kehr G, Erker G, Hansen MR, Eckert H. Solid-state NMR techniques for the structural characterization of cyclic aggregates based on borane-phosphane frustrated Lewis pairs [Internet]. Molecules. 2020 ; 25( 6): 1400-1-1400-39.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/molecules25061400
Vancouver
Knitsch R, Brinkkötter M, Wiegand T, Kehr G, Erker G, Hansen MR, Eckert H. Solid-state NMR techniques for the structural characterization of cyclic aggregates based on borane-phosphane frustrated Lewis pairs [Internet]. Molecules. 2020 ; 25( 6): 1400-1-1400-39.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/molecules25061400
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
POIGNARD, Camille e PADE, Jan Philipp e PEREIRA, Tiago. The effects of structural perturbations on the synchronizability of diffusive networks. Journal of Nonlinear Science, v. 29, p. 1919-1942, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00332-019-09534-7. Acesso em: 15 nov. 2024.
APA
Poignard, C., Pade, J. P., & Pereira, T. (2019). The effects of structural perturbations on the synchronizability of diffusive networks. Journal of Nonlinear Science, 29, 1919-1942. doi:10.1007/s00332-019-09534-7
NLM
Poignard C, Pade JP, Pereira T. The effects of structural perturbations on the synchronizability of diffusive networks [Internet]. Journal of Nonlinear Science. 2019 ; 29 1919-1942.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00332-019-09534-7
Vancouver
Poignard C, Pade JP, Pereira T. The effects of structural perturbations on the synchronizability of diffusive networks [Internet]. Journal of Nonlinear Science. 2019 ; 29 1919-1942.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00332-019-09534-7
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DURÃO, Luiz Fernando Cardoso dos Santos et al. Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments. Progress in Additive Manufacturing, v. 4, n. 3, p. 291-313, 2019Tradução . . Disponível em: https://doi.org/10.1007/s40964-019-00075-9. Acesso em: 15 nov. 2024.
APA
Durão, L. F. C. dos S., Barkoczy, R. A., Zancul, E. de S., Ho, L. L., & Bonnard, R. (2019). Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments. Progress in Additive Manufacturing, 4( 3), 291-313. doi:10.1007/s40964-019-00075-9
NLM
Durão LFC dos S, Barkoczy RA, Zancul E de S, Ho LL, Bonnard R. Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments [Internet]. Progress in Additive Manufacturing. 2019 ;4( 3): 291-313.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s40964-019-00075-9
Vancouver
Durão LFC dos S, Barkoczy RA, Zancul E de S, Ho LL, Bonnard R. Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments [Internet]. Progress in Additive Manufacturing. 2019 ;4( 3): 291-313.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s40964-019-00075-9
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KAMPERT, Karl-Heinz et al. Multi-messenger physics with the Pierre Auger Observatory. Frontiers in Astronomy and Space Sciences, v. 6, p. 24-1-24-19, 2019Tradução . . Disponível em: https://doi.org/10.3389/fspas.2019.00024. Acesso em: 15 nov. 2024.
APA
Kampert, K. -H., Mostafa, M. A., Zas, E., Albuquerque, I. F. da M. e, Catalani, F., Souza, V. de, et al. (2019). Multi-messenger physics with the Pierre Auger Observatory. Frontiers in Astronomy and Space Sciences, 6, 24-1-24-19. doi:10.3389/fspas.2019.00024
NLM
Kampert K-H, Mostafa MA, Zas E, Albuquerque IF da M e, Catalani F, Souza V de, Kemmerich N, Lang RG, Prado RR, Carvalho Junior WR de, Santos EM, Peixoto CJT. Multi-messenger physics with the Pierre Auger Observatory [Internet]. Frontiers in Astronomy and Space Sciences. 2019 ; 6 24-1-24-19.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fspas.2019.00024
Vancouver
Kampert K-H, Mostafa MA, Zas E, Albuquerque IF da M e, Catalani F, Souza V de, Kemmerich N, Lang RG, Prado RR, Carvalho Junior WR de, Santos EM, Peixoto CJT. Multi-messenger physics with the Pierre Auger Observatory [Internet]. Frontiers in Astronomy and Space Sciences. 2019 ; 6 24-1-24-19.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fspas.2019.00024
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PENA, Rodrigo Felipe de Oliveira et al. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks. Frontiers in Computational Neuroscience, v. 12, 2018Tradução . . Disponível em: https://doi.org/10.3389/fncom.2018.00009. Acesso em: 15 nov. 2024.
APA
Pena, R. F. de O., Vellmer, S., Bernardi, D., Roque, A. C., & Lindner, B. (2018). Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks. Frontiers in Computational Neuroscience, 12. doi:10.3389/fncom.2018.00009
NLM
Pena RF de O, Vellmer S, Bernardi D, Roque AC, Lindner B. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks [Internet]. Frontiers in Computational Neuroscience. 2018 ; 12[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fncom.2018.00009
Vancouver
Pena RF de O, Vellmer S, Bernardi D, Roque AC, Lindner B. Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks [Internet]. Frontiers in Computational Neuroscience. 2018 ; 12[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fncom.2018.00009
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONCALVES-DE-ALBUQUERQUE, Cassiano Felippe e CAPELOZZI, Vera Luiza. The Yin and Yang of Tyrosine Kinase inhibition During experimental Polymicrobial sepsis. Frontiers in immunology, v. 9, 2018Tradução . . Disponível em: https://doi.org/10.3389/fimmu.2018.00901. Acesso em: 15 nov. 2024.
APA
Goncalves-de-albuquerque, C. F., & Capelozzi, V. L. (2018). The Yin and Yang of Tyrosine Kinase inhibition During experimental Polymicrobial sepsis. Frontiers in immunology, 9. doi:10.3389/fimmu.2018.00901
NLM
Goncalves-de-albuquerque CF, Capelozzi VL. The Yin and Yang of Tyrosine Kinase inhibition During experimental Polymicrobial sepsis [Internet]. Frontiers in immunology. 2018 ; 9[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fimmu.2018.00901
Vancouver
Goncalves-de-albuquerque CF, Capelozzi VL. The Yin and Yang of Tyrosine Kinase inhibition During experimental Polymicrobial sepsis [Internet]. Frontiers in immunology. 2018 ; 9[citado 2024 nov. 15 ] Available from: https://doi.org/10.3389/fimmu.2018.00901
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANDER, Sören et al. Emulsion flow analysis of a sensor probe for sustainable machine operation. Fluids, v. 2, n. 1, p. 1-8, 2017Tradução . . Disponível em: https://doi.org/10.3390/fluids201000. Acesso em: 15 nov. 2024.
APA
Sander, S., Glasse, B., Grosche, L. C., Paiva, J. L. de, Guardani, R., & Fritsching, U. (2017). Emulsion flow analysis of a sensor probe for sustainable machine operation. Fluids, 2( 1), 1-8. doi:10.3390/fluids201000
NLM
Sander S, Glasse B, Grosche LC, Paiva JL de, Guardani R, Fritsching U. Emulsion flow analysis of a sensor probe for sustainable machine operation [Internet]. Fluids. 2017 ;2( 1): 1-8.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/fluids201000
Vancouver
Sander S, Glasse B, Grosche LC, Paiva JL de, Guardani R, Fritsching U. Emulsion flow analysis of a sensor probe for sustainable machine operation [Internet]. Fluids. 2017 ;2( 1): 1-8.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3390/fluids201000
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
AASTRUP, Johannes et al. Boutet de Monvel’s calculus and groupoids I. Journal of Noncommutative Geometry, v. 4, n. 3, p. 313-329, 2010Tradução . . Disponível em: https://doi.org/10.4171/jncg/57. Acesso em: 15 nov. 2024.
APA
Aastrup, J., Melo, S. T. do R., Monthubert, B., & Schrohe, E. (2010). Boutet de Monvel’s calculus and groupoids I. Journal of Noncommutative Geometry, 4( 3), 313-329. doi:10.4171/jncg/57
NLM
Aastrup J, Melo ST do R, Monthubert B, Schrohe E. Boutet de Monvel’s calculus and groupoids I [Internet]. Journal of Noncommutative Geometry. 2010 ; 4( 3): 313-329.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4171/jncg/57
Vancouver
Aastrup J, Melo ST do R, Monthubert B, Schrohe E. Boutet de Monvel’s calculus and groupoids I [Internet]. Journal of Noncommutative Geometry. 2010 ; 4( 3): 313-329.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4171/jncg/57