Filtros : "FISIOLOGIA" "Neuroscience" Removidos: "Ortopedia e Traumatologia" "DES" "MCM" "Checo" Limpar

Filtros



Refine with date range


  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA, DOENÇA DE PARKINSON, ANÓXIA, CAMUNDONGOS, NEURÔNIOS, COLINÉRGICOS, PROTEÍNAS DE FLUORESCÊNCIA VERDE, PRESSÃO SANGUÍNEA, RESPIRAÇÃO ANIMAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, Nicole Castro de Souza et al. The pedunculopontine tegmental nucleus is not important for breathing impairments observed in a Parkinson’s disease model. Neuroscience, v. 512, p. 32-46, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2022.12.022. Acesso em: 18 nov. 2024.
    • APA

      Miranda, N. C. de S., Santos, L. M. O., Aquino, Y. C., Moreira, T. dos S., & Takakura, A. C. (2023). The pedunculopontine tegmental nucleus is not important for breathing impairments observed in a Parkinson’s disease model. Neuroscience, 512, 32-46. doi:10.1016/j.neuroscience.2022.12.022
    • NLM

      Miranda NC de S, Santos LMO, Aquino YC, Moreira T dos S, Takakura AC. The pedunculopontine tegmental nucleus is not important for breathing impairments observed in a Parkinson’s disease model [Internet]. Neuroscience. 2023 ; 512 32-46.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2022.12.022
    • Vancouver

      Miranda NC de S, Santos LMO, Aquino YC, Moreira T dos S, Takakura AC. The pedunculopontine tegmental nucleus is not important for breathing impairments observed in a Parkinson’s disease model [Internet]. Neuroscience. 2023 ; 512 32-46.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2022.12.022
  • Source: Neuroscience. Unidade: ICB

    Subjects: FARMACOLOGIA, FISIOLOGIA, MEDULA ESPINHAL, MIELOENCEFALOPATIA ANIMAL, MIELITE ANIMAL, DOENÇAS DO SISTEMA NERVOSO EM ANIMAL, ACETILCOLINA, ATIVAÇÃO ENZIMÁTICA, RESPIRAÇÃO ANIMAL, NEURÔNIOS, SUBSTÂNCIA CINZENTA PERIAQUEDUTAL, RATOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Luiz Marcelo Oliveira e TAKAKURA, Ana Carolina e MOREIRA, Thiago dos Santos. Forebrain and hindbrain projecting-neurons target the post-inspiratory complex cholinergic neurons. Neuroscience, v. 476, p. 102-115, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2021.09.015. Acesso em: 18 nov. 2024.
    • APA

      Santos, L. M. O., Takakura, A. C., & Moreira, T. dos S. (2021). Forebrain and hindbrain projecting-neurons target the post-inspiratory complex cholinergic neurons. Neuroscience, 476, 102-115. doi:10.1016/j.neuroscience.2021.09.015
    • NLM

      Santos LMO, Takakura AC, Moreira T dos S. Forebrain and hindbrain projecting-neurons target the post-inspiratory complex cholinergic neurons [Internet]. Neuroscience. 2021 ; 476 102-115.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2021.09.015
    • Vancouver

      Santos LMO, Takakura AC, Moreira T dos S. Forebrain and hindbrain projecting-neurons target the post-inspiratory complex cholinergic neurons [Internet]. Neuroscience. 2021 ; 476 102-115.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2021.09.015
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, HIPOTÁLAMO, INGESTÃO, HORMÔNIO DO CRESCIMENTO, AXÔNIOS, CAMUNDONGOS, LEPTINA, PEPTÍDEOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WASINSKI, Frederick et al. Growth hormone receptor deletion reduces the density of axonal projections from hypothalamic arcuate nucleus neurons. Neuroscience, v. 434, p. 136-147, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2020.03.037. Acesso em: 18 nov. 2024.
    • APA

      Wasinski, F., Furigo, I. C., Teixeira, P. D. S., Lobo, A. M. R., Peroni, C. N., Bartolini, P., et al. (2020). Growth hormone receptor deletion reduces the density of axonal projections from hypothalamic arcuate nucleus neurons. Neuroscience, 434, 136-147. doi:10.1016/j.neuroscience.2020.03.037
    • NLM

      Wasinski F, Furigo IC, Teixeira PDS, Lobo AMR, Peroni CN, Bartolini P, List EO, Kopchick JJ, Donato Junior J. Growth hormone receptor deletion reduces the density of axonal projections from hypothalamic arcuate nucleus neurons [Internet]. Neuroscience. 2020 ; 434 136-147.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2020.03.037
    • Vancouver

      Wasinski F, Furigo IC, Teixeira PDS, Lobo AMR, Peroni CN, Bartolini P, List EO, Kopchick JJ, Donato Junior J. Growth hormone receptor deletion reduces the density of axonal projections from hypothalamic arcuate nucleus neurons [Internet]. Neuroscience. 2020 ; 434 136-147.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2020.03.037
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALHEIROS-LIMA, Milene R. e TAKAKURA, Ana Carolina e MOREIRA, Thiago dos Santos. Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats. Neuroscience, v. 351, p. 1-14, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2017.03.031. Acesso em: 18 nov. 2024.
    • APA

      Malheiros-Lima, M. R., Takakura, A. C., & Moreira, T. dos S. (2017). Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats. Neuroscience, 351, 1-14. doi:10.1016/j.neuroscience.2017.03.031
    • NLM

      Malheiros-Lima MR, Takakura AC, Moreira T dos S. Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats [Internet]. Neuroscience. 2017 ; 351 1-14.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.03.031
    • Vancouver

      Malheiros-Lima MR, Takakura AC, Moreira T dos S. Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats [Internet]. Neuroscience. 2017 ; 351 1-14.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.03.031
  • Source: Neuroscience. Unidade: ICB

    Assunto: FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA-NETO, H. C. et al. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation. Neuroscience, v. 349, p. 253-263, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2017.02.05. Acesso em: 18 nov. 2024.
    • APA

      Ferreira-Neto, H. C., Ribeiro, I. M. R., Moreira, T. dos S., Yao, S. T., & Antunes, V. R. (2017). Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation. Neuroscience, 349, 253-263. doi:10.1016/j.neuroscience.2017.02.05
    • NLM

      Ferreira-Neto HC, Ribeiro IMR, Moreira T dos S, Yao ST, Antunes VR. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation [Internet]. Neuroscience. 2017 ; 349 253-263.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.02.05
    • Vancouver

      Ferreira-Neto HC, Ribeiro IMR, Moreira T dos S, Yao ST, Antunes VR. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation [Internet]. Neuroscience. 2017 ; 349 253-263.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.02.05
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAXINI, Camila L. et al. Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions. Neuroscience, v. 354, p. 146-157, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2017.04.033. Acesso em: 18 nov. 2024.
    • APA

      Taxini, C. L., Moreira, T. dos S., Takakura, A. C., Bícego, K. C., Gargaglioni, L. H., & Zoccal, D. B. (2017). Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions. Neuroscience, 354, 146-157. doi:10.1016/j.neuroscience.2017.04.033
    • NLM

      Taxini CL, Moreira T dos S, Takakura AC, Bícego KC, Gargaglioni LH, Zoccal DB. Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions [Internet]. Neuroscience. 2017 ; 354 146-157.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.04.033
    • Vancouver

      Taxini CL, Moreira T dos S, Takakura AC, Bícego KC, Gargaglioni LH, Zoccal DB. Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions [Internet]. Neuroscience. 2017 ; 354 146-157.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.04.033
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAVELLI, Katherine Garcia et al. NADPH oxidase contributes to streptozotocin-induced neurodegeneration. Neuroscience, v. 358, p. 227-237, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2017.06.050. Acesso em: 18 nov. 2024.
    • APA

      Ravelli, K. G., Rosário, B. dos A., Vasconcelos, A. R., Scavone, C., Camarini, R., Hernandes, M. S., & Britto, L. R. G. de. (2017). NADPH oxidase contributes to streptozotocin-induced neurodegeneration. Neuroscience, 358, 227-237. doi:10.1016/j.neuroscience.2017.06.050
    • NLM

      Ravelli KG, Rosário B dos A, Vasconcelos AR, Scavone C, Camarini R, Hernandes MS, Britto LRG de. NADPH oxidase contributes to streptozotocin-induced neurodegeneration [Internet]. Neuroscience. 2017 ; 358 227-237.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.06.050
    • Vancouver

      Ravelli KG, Rosário B dos A, Vasconcelos AR, Scavone C, Camarini R, Hernandes MS, Britto LRG de. NADPH oxidase contributes to streptozotocin-induced neurodegeneration [Internet]. Neuroscience. 2017 ; 358 227-237.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.06.050
  • Source: Neuroscience. Unidade: ICB

    Assunto: FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS-LOBO, Angela M. et al. SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation. Neuroscience, v. 365, p. 114-124, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2017.09.048. Acesso em: 18 nov. 2024.
    • APA

      Ramos-Lobo, A. M., Teixeira, P. D. S., Furigo, I. C., & Donato Junior, J. (2017). SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation. Neuroscience, 365, 114-124. doi:10.1016/j.neuroscience.2017.09.048
    • NLM

      Ramos-Lobo AM, Teixeira PDS, Furigo IC, Donato Junior J. SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation [Internet]. Neuroscience. 2017 ; 365 114-124.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.09.048
    • Vancouver

      Ramos-Lobo AM, Teixeira PDS, Furigo IC, Donato Junior J. SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation [Internet]. Neuroscience. 2017 ; 365 114-124.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2017.09.048
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA, DOENÇA DE PARKINSON, RESPIRAÇÃO (DEFICIÊNCIA), RATOS, MODELOS ANIMAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TUPPY, Marina et al. Respiratory deficits in a rat model of Parkinson's disease. Neuroscience, v. 297, p. 194-204, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2015.03.048. Acesso em: 18 nov. 2024.
    • APA

      Tuppy, M., Falquetto, B., Santos, L. A. dos, Britto, L. R. G. de, Chiavegatto, S., Moreira, T. dos S., & Takakura, A. C. (2015). Respiratory deficits in a rat model of Parkinson's disease. Neuroscience, 297, 194-204. doi:10.1016/j.neuroscience.2015.03.048
    • NLM

      Tuppy M, Falquetto B, Santos LA dos, Britto LRG de, Chiavegatto S, Moreira T dos S, Takakura AC. Respiratory deficits in a rat model of Parkinson's disease [Internet]. Neuroscience. 2015 ; 297 194-204.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2015.03.048
    • Vancouver

      Tuppy M, Falquetto B, Santos LA dos, Britto LRG de, Chiavegatto S, Moreira T dos S, Takakura AC. Respiratory deficits in a rat model of Parkinson's disease [Internet]. Neuroscience. 2015 ; 297 194-204.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2015.03.048
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA, TRONCO CEREBRAL, APNÉIA, RATOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, C. B. et al. Brainstem areas activated by intermittent apnea in awake unrestrained rats. Neuroscience, v. 297, p. 262-271, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2015.04.007. Acesso em: 18 nov. 2024.
    • APA

      Ferreira, C. B., Schoorlemmer, G. H., Rossi, M. V., Takakura, A. C., Falquetto, B., Moreira, T. dos S., & Cravo, S. L. D. (2015). Brainstem areas activated by intermittent apnea in awake unrestrained rats. Neuroscience, 297, 262-271. doi:10.1016/j.neuroscience.2015.04.007
    • NLM

      Ferreira CB, Schoorlemmer GH, Rossi MV, Takakura AC, Falquetto B, Moreira T dos S, Cravo SLD. Brainstem areas activated by intermittent apnea in awake unrestrained rats [Internet]. Neuroscience. 2015 ; 297 262-271.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2015.04.007
    • Vancouver

      Ferreira CB, Schoorlemmer GH, Rossi MV, Takakura AC, Falquetto B, Moreira T dos S, Cravo SLD. Brainstem areas activated by intermittent apnea in awake unrestrained rats [Internet]. Neuroscience. 2015 ; 297 262-271.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2015.04.007
  • Source: Neuroscience. Unidade: ICB

    Assunto: FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAGAISHI, V. S. et al. Possible crosstalk between leptin and proclactin during pregnancy. Neuroscience, v. 259, p. 71-83, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2013.11.050. Acesso em: 18 nov. 2024.
    • APA

      Nagaishi, V. S., Cardinali, L. I., Zampieri, T. T., Furigo, I. C., Metzger, M. A., & Donato Junior, J. (2014). Possible crosstalk between leptin and proclactin during pregnancy. Neuroscience, 259, 71-83. doi:10.1016/j.neuroscience.2013.11.050
    • NLM

      Nagaishi VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger MA, Donato Junior J. Possible crosstalk between leptin and proclactin during pregnancy [Internet]. Neuroscience. 2014 ; 259 71-83.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.11.050
    • Vancouver

      Nagaishi VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger MA, Donato Junior J. Possible crosstalk between leptin and proclactin during pregnancy [Internet]. Neuroscience. 2014 ; 259 71-83.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.11.050
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA, RATOS, HIPOTÁLAMO, SISTEMA RESPIRATÓRIO (FISIOLOGIA;FARMACOLOGIA), RATOS WISTAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUETTO, Bárbara e TAKAKURA, Ana Carolina e MOREIRA, Thiago dos Santos. Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus. Neuroscience, v. 258, p. 355-363, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2013.11.031. Acesso em: 18 nov. 2024.
    • APA

      Falquetto, B., Takakura, A. C., & Moreira, T. dos S. (2014). Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus. Neuroscience, 258, 355-363. doi:10.1016/j.neuroscience.2013.11.031
    • NLM

      Falquetto B, Takakura AC, Moreira T dos S. Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus [Internet]. Neuroscience. 2014 ; 258 355-363.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.11.031
    • Vancouver

      Falquetto B, Takakura AC, Moreira T dos S. Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus [Internet]. Neuroscience. 2014 ; 258 355-363.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.11.031
  • Source: Neuroscience. Unidade: ICB

    Assunto: FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REAL, Caroline Cristiano et al. BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of parkinson’s disease. Neuroscience, v. 237, p. 118-129, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2013.01.060. Acesso em: 18 nov. 2024.
    • APA

      Real, C. C., Ferreira, A. F. B., Chaves-Kirsten, G. P., Torrão, A. da S., Pires, R. S., & Britto, L. R. G. de. (2013). BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of parkinson’s disease. Neuroscience, 237, 118-129. doi:10.1016/j.neuroscience.2013.01.060
    • NLM

      Real CC, Ferreira AFB, Chaves-Kirsten GP, Torrão A da S, Pires RS, Britto LRG de. BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of parkinson’s disease [Internet]. Neuroscience. 2013 ; 237 118-129.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.01.060
    • Vancouver

      Real CC, Ferreira AFB, Chaves-Kirsten GP, Torrão A da S, Pires RS, Britto LRG de. BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of parkinson’s disease [Internet]. Neuroscience. 2013 ; 237 118-129.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.01.060
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOTOLA, Leonardo Tedesco et al. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine. Neuroscience, v. 250, p. 80-91, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2013.06.065. Acesso em: 18 nov. 2024.
    • APA

      Totola, L. T., Alves, T. B., Takakura, A. C., Ferreira-Neto, H. C., Antunes, V. R., Menani, J. V., et al. (2013). Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine. Neuroscience, 250, 80-91. doi:10.1016/j.neuroscience.2013.06.065
    • NLM

      Totola LT, Alves TB, Takakura AC, Ferreira-Neto HC, Antunes VR, Menani JV, Colombari E, Moreira T dos S. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine [Internet]. Neuroscience. 2013 ; 250 80-91.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.06.065
    • Vancouver

      Totola LT, Alves TB, Takakura AC, Ferreira-Neto HC, Antunes VR, Menani JV, Colombari E, Moreira T dos S. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine [Internet]. Neuroscience. 2013 ; 250 80-91.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.06.065
  • Source: Neuroscience. Unidades: ICB, FMRP

    Subjects: ANATOMIA, FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DONATO JUNIOR, José et al. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in kiss1 and gnrh expression characteristic of the proestrus–estrus transition. Neuroscience, v. 241, p. 67-79, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2013.03.013. Acesso em: 18 nov. 2024.
    • APA

      Donato Junior, J., Lee. C,, Ratra, D. V., Franci, C. R., Canteras, N. S., & Elias, C. F. (2013). Lesions of the ventral premammillary nucleus disrupt the dynamic changes in kiss1 and gnrh expression characteristic of the proestrus–estrus transition. Neuroscience, 241, 67-79. doi:10.1016/j.neuroscience.2013.03.013
    • NLM

      Donato Junior J, Lee. C, Ratra DV, Franci CR, Canteras NS, Elias CF. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in kiss1 and gnrh expression characteristic of the proestrus–estrus transition [Internet]. Neuroscience. 2013 ; 241 67-79.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.03.013
    • Vancouver

      Donato Junior J, Lee. C, Ratra DV, Franci CR, Canteras NS, Elias CF. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in kiss1 and gnrh expression characteristic of the proestrus–estrus transition [Internet]. Neuroscience. 2013 ; 241 67-79.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2013.03.013
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUETTO, Bárbara e TAKAKURA, Ana Carolina e MOREIRA, Thiago dos Santos. Pontomedullary and hypothalamic distribution of fos-like immunoreactive neurons after acute exercise in rats. Neuroscience, v. 212, p. 120-130, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2012.03.039. Acesso em: 18 nov. 2024.
    • APA

      Falquetto, B., Takakura, A. C., & Moreira, T. dos S. (2012). Pontomedullary and hypothalamic distribution of fos-like immunoreactive neurons after acute exercise in rats. Neuroscience, 212, 120-130. doi:10.1016/j.neuroscience.2012.03.039
    • NLM

      Falquetto B, Takakura AC, Moreira T dos S. Pontomedullary and hypothalamic distribution of fos-like immunoreactive neurons after acute exercise in rats [Internet]. Neuroscience. 2012 ; 212 120-130.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2012.03.039
    • Vancouver

      Falquetto B, Takakura AC, Moreira T dos S. Pontomedullary and hypothalamic distribution of fos-like immunoreactive neurons after acute exercise in rats [Internet]. Neuroscience. 2012 ; 212 120-130.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2012.03.039
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAXINI, C. L. et al. Control of the central chemoreflex by a5 noradrenergic neurons in rats. Neuroscience, v. 199, p. 177-186, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2011.09.068. Acesso em: 18 nov. 2024.
    • APA

      Taxini, C. L., Takakura, A. C., Gargaglioni, L. H., & Moreira, T. dos S. (2011). Control of the central chemoreflex by a5 noradrenergic neurons in rats. Neuroscience, 199, 177-186. doi:10.1016/j.neuroscience.2011.09.068
    • NLM

      Taxini CL, Takakura AC, Gargaglioni LH, Moreira T dos S. Control of the central chemoreflex by a5 noradrenergic neurons in rats [Internet]. Neuroscience. 2011 ; 199 177-186.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2011.09.068
    • Vancouver

      Taxini CL, Takakura AC, Gargaglioni LH, Moreira T dos S. Control of the central chemoreflex by a5 noradrenergic neurons in rats [Internet]. Neuroscience. 2011 ; 199 177-186.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2011.09.068
  • Source: Neuroscience. Unidade: ICB

    Subjects: ANATOMIA, FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINEZ, R. C. et al. Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience, v. 172, n. 13, p. 314-328, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2010.10.033. Acesso em: 18 nov. 2024.
    • APA

      Martinez, R. C., Carvalho-Netto, E. F., Ribeiro-Barbosa, É. R., Baldo, M. V. C., & Canteras, N. S. (2011). Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience, 172( 13), 314-328. doi:10.1016/j.neuroscience.2010.10.033
    • NLM

      Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ÉR, Baldo MVC, Canteras NS. Amygdalar roles during exposure to a live predator and to a predator-associated context [Internet]. Neuroscience. 2011 ; 172( 13): 314-328.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2010.10.033
    • Vancouver

      Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ÉR, Baldo MVC, Canteras NS. Amygdalar roles during exposure to a live predator and to a predator-associated context [Internet]. Neuroscience. 2011 ; 172( 13): 314-328.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2010.10.033
  • Source: Neuroscience. Unidade: ICB

    Subjects: FISIOLOGIA, FARMACOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKAKURA, Ana Carolina et al. Inhibition of the caudal pressor area reduces cardiorespiratory chemoreflex responses. Neuroscience, v. 177, n. Único, p. 84-92, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2011.01.002. Acesso em: 18 nov. 2024.
    • APA

      Takakura, A. C., Moreira, T. dos S., Menani, J. V., & Colombari, E. (2011). Inhibition of the caudal pressor area reduces cardiorespiratory chemoreflex responses. Neuroscience, 177( Único), 84-92. doi:10.1016/j.neuroscience.2011.01.002
    • NLM

      Takakura AC, Moreira T dos S, Menani JV, Colombari E. Inhibition of the caudal pressor area reduces cardiorespiratory chemoreflex responses [Internet]. Neuroscience. 2011 ; 177( Único): 84-92.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2011.01.002
    • Vancouver

      Takakura AC, Moreira T dos S, Menani JV, Colombari E. Inhibition of the caudal pressor area reduces cardiorespiratory chemoreflex responses [Internet]. Neuroscience. 2011 ; 177( Único): 84-92.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2011.01.002
  • Source: Neuroscience. Unidades: ICB, FMRP

    Subjects: ANATOMIA, FISIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURIGO, I. C. et al. The role of the superior colliculus in predatory hunting. Neuroscience, v. 165, n. 1, p. 1-15, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.neuroscience.2009.10.004. Acesso em: 18 nov. 2024.
    • APA

      Furigo, I. C., Oliveira, W. F. de, Oliveira, A. R., Comoli, E., Baldo, M. V. C., Mota-Ortiz, S. R., & Canteras, N. S. (2010). The role of the superior colliculus in predatory hunting. Neuroscience, 165( 1), 1-15. doi:10.1016/j.neuroscience.2009.10.004
    • NLM

      Furigo IC, Oliveira WF de, Oliveira AR, Comoli E, Baldo MVC, Mota-Ortiz SR, Canteras NS. The role of the superior colliculus in predatory hunting [Internet]. Neuroscience. 2010 ; 165( 1): 1-15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2009.10.004
    • Vancouver

      Furigo IC, Oliveira WF de, Oliveira AR, Comoli E, Baldo MVC, Mota-Ortiz SR, Canteras NS. The role of the superior colliculus in predatory hunting [Internet]. Neuroscience. 2010 ; 165( 1): 1-15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neuroscience.2009.10.004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024