A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NAKAMURA, Gilberto Medeiros e MULATO, Marcelo e MARTINEZ, Alexandre Souto. Spin gap in coupled magnetic layers. Physica A, v. 451, p. 313-319, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2016.01.070. Acesso em: 05 nov. 2024.
APA
Nakamura, G. M., Mulato, M., & Martinez, A. S. (2016). Spin gap in coupled magnetic layers. Physica A, 451, 313-319. doi:10.1016/j.physa.2016.01.070
NLM
Nakamura GM, Mulato M, Martinez AS. Spin gap in coupled magnetic layers [Internet]. Physica A. 2016 ; 451 313-319.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.physa.2016.01.070
Vancouver
Nakamura GM, Mulato M, Martinez AS. Spin gap in coupled magnetic layers [Internet]. Physica A. 2016 ; 451 313-319.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.physa.2016.01.070
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALVES, Nelson Augusto e FRIGORI, Rafael B. Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions. Physica A, v. 446, p. 195-203, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2015.12.004. Acesso em: 05 nov. 2024.
APA
Alves, N. A., & Frigori, R. B. (2016). Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions. Physica A, 446, 195-203. doi:10.1016/j.physa.2015.12.004
NLM
Alves NA, Frigori RB. Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions [Internet]. Physica A. 2016 ; 446 195-203.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.physa.2015.12.004
Vancouver
Alves NA, Frigori RB. Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions [Internet]. Physica A. 2016 ; 446 195-203.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.physa.2015.12.004
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MENEZES, Henrique Dantas de et al. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. Journal of Photochemistry and Photobiology B: Biology, v. 164, p. 1-12, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jphotobiol.2016.09.008. Acesso em: 05 nov. 2024.
APA
Menezes, H. D. de, Tonani, L., Bachmann, L., Wainwright, M., Braga, G. Ú. L., & Kress, M. R. von Z. (2016). Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. Journal of Photochemistry and Photobiology B: Biology, 164, 1-12. doi:10.1016/j.jphotobiol.2016.09.008
NLM
Menezes HD de, Tonani L, Bachmann L, Wainwright M, Braga GÚL, Kress MR von Z. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani [Internet]. Journal of Photochemistry and Photobiology B: Biology. 2016 ; 164 1-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jphotobiol.2016.09.008
Vancouver
Menezes HD de, Tonani L, Bachmann L, Wainwright M, Braga GÚL, Kress MR von Z. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani [Internet]. Journal of Photochemistry and Photobiology B: Biology. 2016 ; 164 1-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jphotobiol.2016.09.008
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BITENCOURT, José Jardes da Gama et al. Miltefosine-loaded lipid nanoparticles: improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophysical Chemistry, v. 217, p. 20-31, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.bpc.2016.07.005. Acesso em: 05 nov. 2024.
APA
Bitencourt, J. J. da G., Pazin, W. M., Ito, A. S., Barioni, M. B., Pinto, C. de P., Santos, M. A. dos, et al. (2016). Miltefosine-loaded lipid nanoparticles: improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophysical Chemistry, 217, 20-31. doi:10.1016/j.bpc.2016.07.005
NLM
Bitencourt JJ da G, Pazin WM, Ito AS, Barioni MB, Pinto C de P, Santos MA dos, Guimarães THS, Santos MRM dos, Valduga CJ. Miltefosine-loaded lipid nanoparticles: improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages [Internet]. Biophysical Chemistry. 2016 ; 217 20-31.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.bpc.2016.07.005
Vancouver
Bitencourt JJ da G, Pazin WM, Ito AS, Barioni MB, Pinto C de P, Santos MA dos, Guimarães THS, Santos MRM dos, Valduga CJ. Miltefosine-loaded lipid nanoparticles: improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages [Internet]. Biophysical Chemistry. 2016 ; 217 20-31.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.bpc.2016.07.005
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MAZIERO, Danilo et al. Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Neuroimage, v. 138, p. 13-27, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.neuroimage.2016.05.003. Acesso em: 05 nov. 2024.
APA
Maziero, D., Velasco, T. R., Hunt, N., Payne, E., Lemieux, L., Salmon, C. E. G., & Carmichael, D. W. (2016). Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Neuroimage, 138, 13-27. doi:10.1016/j.neuroimage.2016.05.003
NLM
Maziero D, Velasco TR, Hunt N, Payne E, Lemieux L, Salmon CEG, Carmichael DW. Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system [Internet]. Neuroimage. 2016 ; 138 13-27.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.neuroimage.2016.05.003
Vancouver
Maziero D, Velasco TR, Hunt N, Payne E, Lemieux L, Salmon CEG, Carmichael DW. Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system [Internet]. Neuroimage. 2016 ; 138 13-27.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.neuroimage.2016.05.003
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GUIDELLI, Éder José e RAMOS, Ana Paula e BAFFA, Oswaldo. Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications. Sensors and Actuators B: Chemical, v. 224, p. 248-255, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.snb.2015.10.024. Acesso em: 05 nov. 2024.
APA
Guidelli, É. J., Ramos, A. P., & Baffa, O. (2016). Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications. Sensors and Actuators B: Chemical, 224, 248-255. doi:10.1016/j.snb.2015.10.024
NLM
Guidelli ÉJ, Ramos AP, Baffa O. Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications [Internet]. Sensors and Actuators B: Chemical. 2016 ; 224 248-255.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.snb.2015.10.024
Vancouver
Guidelli ÉJ, Ramos AP, Baffa O. Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications [Internet]. Sensors and Actuators B: Chemical. 2016 ; 224 248-255.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.snb.2015.10.024