Filtros : "Universidade Federal de São Carlos (UFSCar)" "Financiado pela FINEP" Removido: "SINTERIZAÇÃO" Limpar

Filtros



Refine with date range


  • Source: Tetrahedron Letters. Unidade: FCF

    Subjects: ITÉRBIO, SÍNTESE ORGÂNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Isadora M. de et al. Ytterbium-catalyzed formal [4+2] cycloaddition: synthesis of chalcogen-quinolines 3-unsubstituted. Tetrahedron Letters, v. 59, n. 24, p. 3907-3911, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.tetlet.2018.09.022. Acesso em: 05 nov. 2024.
    • APA

      Oliveira, I. M. de, Darbem, M. P., Esteves, C. H. A., Pimenta, D. C., Schpector, J. Z., Stefani, H. A., & Manarin, F. (2018). Ytterbium-catalyzed formal [4+2] cycloaddition: synthesis of chalcogen-quinolines 3-unsubstituted. Tetrahedron Letters, 59( 24), 3907-3911. doi:10.1016/j.tetlet.2018.09.022
    • NLM

      Oliveira IM de, Darbem MP, Esteves CHA, Pimenta DC, Schpector JZ, Stefani HA, Manarin F. Ytterbium-catalyzed formal [4+2] cycloaddition: synthesis of chalcogen-quinolines 3-unsubstituted [Internet]. Tetrahedron Letters. 2018 ; 59( 24): 3907-3911.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.tetlet.2018.09.022
    • Vancouver

      Oliveira IM de, Darbem MP, Esteves CHA, Pimenta DC, Schpector JZ, Stefani HA, Manarin F. Ytterbium-catalyzed formal [4+2] cycloaddition: synthesis of chalcogen-quinolines 3-unsubstituted [Internet]. Tetrahedron Letters. 2018 ; 59( 24): 3907-3911.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.tetlet.2018.09.022
  • Source: Communications in Partial Differential Equations. Unidades: ICMC, IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e CORDARO, Paulo Domingos e PETRONILHO, Gerson. Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, v. 29, n. 5/6, p. 785-819, 2004Tradução . . Disponível em: https://doi.org/10.1081/PDE-120037332. Acesso em: 05 nov. 2024.
    • APA

      Bergamasco, A. P., Cordaro, P. D., & Petronilho, G. (2004). Global solvability for a class of complex vector fields on the two-torus. Communications in Partial Differential Equations, 29( 5/6), 785-819. doi:10.1081/PDE-120037332
    • NLM

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1081/PDE-120037332
    • Vancouver

      Bergamasco AP, Cordaro PD, Petronilho G. Global solvability for a class of complex vector fields on the two-torus [Internet]. Communications in Partial Differential Equations. 2004 ; 29( 5/6): 785-819.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1081/PDE-120037332
  • Source: American Journal of Mathematics. Unidade: IME

    Assunto: COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDARO, Paulo Domingos e HOUNIE, Jorge. Local solvability for top degree forms in a class of systems of vector fields. American Journal of Mathematics, v. 121, n. 3, p. 487-495, 1999Tradução . . Disponível em: https://doi.org/10.1353/ajm.1999.0017. Acesso em: 05 nov. 2024.
    • APA

      Cordaro, P. D., & Hounie, J. (1999). Local solvability for top degree forms in a class of systems of vector fields. American Journal of Mathematics, 121( 3), 487-495. doi:10.1353/ajm.1999.0017
    • NLM

      Cordaro PD, Hounie J. Local solvability for top degree forms in a class of systems of vector fields [Internet]. American Journal of Mathematics. 1999 ; 121( 3): 487-495.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1353/ajm.1999.0017
    • Vancouver

      Cordaro PD, Hounie J. Local solvability for top degree forms in a class of systems of vector fields [Internet]. American Journal of Mathematics. 1999 ; 121( 3): 487-495.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1353/ajm.1999.0017

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024