A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CHAKRABARTI, Barnali et al. Quantum-information-theoretical measures to distinguish fermionized bosons from noninteracting fermions. Physical Review A, v. 109, 2024Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.109.063308. Acesso em: 12 nov. 2024.
APA
Chakrabarti, B., Gammal, A., Chavda, N. D., & Lekala, M. L. (2024). Quantum-information-theoretical measures to distinguish fermionized bosons from noninteracting fermions. Physical Review A, 109. doi:10.1103/PhysRevA.109.063308
NLM
Chakrabarti B, Gammal A, Chavda ND, Lekala ML. Quantum-information-theoretical measures to distinguish fermionized bosons from noninteracting fermions [Internet]. Physical Review A. 2024 ; 109[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevA.109.063308
Vancouver
Chakrabarti B, Gammal A, Chavda ND, Lekala ML. Quantum-information-theoretical measures to distinguish fermionized bosons from noninteracting fermions [Internet]. Physical Review A. 2024 ; 109[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevA.109.063308
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PATEL, Hima et al. Optimized Mn0.5Zn0.5Fe2O4 nanoflowers based magnetic fluids for potential biomedical applications. Journal of Magnetism and Magnetic Materials, v. 590, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmmm.2023.171656. Acesso em: 12 nov. 2024.
APA
Patel, H., Upadhyay, R. V., Parekh, K., Reis, D., Oliveira, C. L. P. de, & Figueiredo Neto, A. M. (2024). Optimized Mn0.5Zn0.5Fe2O4 nanoflowers based magnetic fluids for potential biomedical applications. Journal of Magnetism and Magnetic Materials, 590. doi:10.1016/j.jmmm.2023.171656
NLM
Patel H, Upadhyay RV, Parekh K, Reis D, Oliveira CLP de, Figueiredo Neto AM. Optimized Mn0.5Zn0.5Fe2O4 nanoflowers based magnetic fluids for potential biomedical applications [Internet]. Journal of Magnetism and Magnetic Materials. 2024 ; 590[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmmm.2023.171656
Vancouver
Patel H, Upadhyay RV, Parekh K, Reis D, Oliveira CLP de, Figueiredo Neto AM. Optimized Mn0.5Zn0.5Fe2O4 nanoflowers based magnetic fluids for potential biomedical applications [Internet]. Journal of Magnetism and Magnetic Materials. 2024 ; 590[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmmm.2023.171656
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PASSOS, Fernando de Almeida et al. Inelastic neutron scattering investigation of the crystal field excitations of NdCo $ _5$. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/2306.00821.pdf. Acesso em: 12 nov. 2024. , 2023
APA
Passos, F. de A., Nilsen, G. J., Patrick, C. E., Le, M. D., Balakrishnan, G., Kumar, S., et al. (2023). Inelastic neutron scattering investigation of the crystal field excitations of NdCo $ _5$. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/2306.00821.pdf
NLM
Passos F de A, Nilsen GJ, Patrick CE, Le MD, Balakrishnan G, Kumar S, Thamizhavel A, Cornejo DR, Jimenez JAL. Inelastic neutron scattering investigation of the crystal field excitations of NdCo $ _5$ [Internet]. 2023 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/2306.00821.pdf
Vancouver
Passos F de A, Nilsen GJ, Patrick CE, Le MD, Balakrishnan G, Kumar S, Thamizhavel A, Cornejo DR, Jimenez JAL. Inelastic neutron scattering investigation of the crystal field excitations of NdCo $ _5$ [Internet]. 2023 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/2306.00821.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PASSOS, Fernando de Almeida et al. Inelastic neutron scattering investigation of the crystal field excitations of 'ND''CO' IND. 5'. Physical Review B, v. 108, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.108.174409. Acesso em: 12 nov. 2024.
APA
Passos, F. de A., Nilsen, G. J., Patrick, C. E., Le, M. D., Balakrishnan, G., Kumar, S., et al. (2023). Inelastic neutron scattering investigation of the crystal field excitations of 'ND''CO' IND. 5'. Physical Review B, 108. doi:10.1103/PhysRevB.108.174409
NLM
Passos F de A, Nilsen GJ, Patrick CE, Le MD, Balakrishnan G, Kumar S, Thamizhavel A, Cornejo DR, Jimenez JAL. Inelastic neutron scattering investigation of the crystal field excitations of 'ND''CO' IND. 5' [Internet]. Physical Review B. 2023 ; 108[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevB.108.174409
Vancouver
Passos F de A, Nilsen GJ, Patrick CE, Le MD, Balakrishnan G, Kumar S, Thamizhavel A, Cornejo DR, Jimenez JAL. Inelastic neutron scattering investigation of the crystal field excitations of 'ND''CO' IND. 5' [Internet]. Physical Review B. 2023 ; 108[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevB.108.174409
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PATEL, Hima et al. In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed 'MN' IND. 0.5''ZN' IND. 0.5''FE' IND. 2''O' IND. 4' nanoflowers. Journal of Magnetism and Magnetic Materials, v. 587, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmmm.2023.171275. Acesso em: 12 nov. 2024.
APA
Patel, H., Parekh, K., Gamarra, L. F., Mamani, J. B., Alves, A. da H., & Figueiredo Neto, A. M. (2023). In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed 'MN' IND. 0.5''ZN' IND. 0.5''FE' IND. 2''O' IND. 4' nanoflowers. Journal of Magnetism and Magnetic Materials, 587. doi:10.1016/j.jmmm.2023.171275
NLM
Patel H, Parekh K, Gamarra LF, Mamani JB, Alves A da H, Figueiredo Neto AM. In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed 'MN' IND. 0.5''ZN' IND. 0.5''FE' IND. 2''O' IND. 4' nanoflowers [Internet]. Journal of Magnetism and Magnetic Materials. 2023 ; 587[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmmm.2023.171275
Vancouver
Patel H, Parekh K, Gamarra LF, Mamani JB, Alves A da H, Figueiredo Neto AM. In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed 'MN' IND. 0.5''ZN' IND. 0.5''FE' IND. 2''O' IND. 4' nanoflowers [Internet]. Journal of Magnetism and Magnetic Materials. 2023 ; 587[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmmm.2023.171275
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROY, Rhombik e CHAKRABARTI, Barnali e GAMMAL, Arnaldo. Out of equilibrium many-body expansion dynamics of strongly interacting bosons. SciPost Physics Core, v. 6; n. 4; 03 de novembro de 2023, p. número do artigo: 73; 16 ; acesso aberto, 2023Tradução . . Disponível em: https://doi.org/10.21468/SciPostPhysCore.6.4.073. Acesso em: 12 nov. 2024.
APA
Roy, R., Chakrabarti, B., & Gammal, A. (2023). Out of equilibrium many-body expansion dynamics of strongly interacting bosons. SciPost Physics Core, 6; n. 4; 03 de novembro de 2023, número do artigo: 73; 16 ; acesso aberto. doi:10.21468/SciPostPhysCore.6.4.073
NLM
Roy R, Chakrabarti B, Gammal A. Out of equilibrium many-body expansion dynamics of strongly interacting bosons [Internet]. SciPost Physics Core. 2023 ; 6; n. 4; 03 de novembro de 2023 número do artigo: 73; 16 ; acesso aberto.[citado 2024 nov. 12 ] Available from: https://doi.org/10.21468/SciPostPhysCore.6.4.073
Vancouver
Roy R, Chakrabarti B, Gammal A. Out of equilibrium many-body expansion dynamics of strongly interacting bosons [Internet]. SciPost Physics Core. 2023 ; 6; n. 4; 03 de novembro de 2023 número do artigo: 73; 16 ; acesso aberto.[citado 2024 nov. 12 ] Available from: https://doi.org/10.21468/SciPostPhysCore.6.4.073
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROY, Rhombik et al. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. 2022, Anais.. São Carlos: Universidade de São Paulo - USP, 2022. Disponível em: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf. Acesso em: 12 nov. 2024.
APA
Roy, R., Gammal, A., Tsatsos, M., Chatterjee, B., Chakrabarti, B., & Lode, A. U. J. (2022). Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. In Posters. São Carlos: Universidade de São Paulo - USP. Recuperado de https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
NLM
Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 nov. 12 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
Vancouver
Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 nov. 12 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
RAVISANKAR, Rajamanickam et al. Effect of Rashba spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates. Physical Review A, v. 104, 2021Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.104.053315. Acesso em: 12 nov. 2024.
APA
Ravisankar, R., Ferreira, H. F., Gammal, A., Muruganandam, P., & Mishra, P. K. (2021). Effect of Rashba spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates. Physical Review A, 104. doi:10.1103/PhysRevA.104.053315
NLM
Ravisankar R, Ferreira HF, Gammal A, Muruganandam P, Mishra PK. Effect of Rashba spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates [Internet]. Physical Review A. 2021 ; 104[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevA.104.053315
Vancouver
Ravisankar R, Ferreira HF, Gammal A, Muruganandam P, Mishra PK. Effect of Rashba spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates [Internet]. Physical Review A. 2021 ; 104[citado 2024 nov. 12 ] Available from: https://doi.org/10.1103/PhysRevA.104.053315
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LODE, A. U. J. et al. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Tradução . Cham: Springer, 2021. p. 599 . Disponível em: https://doi.org/10.1007/978-3-030-66792-4_5. Acesso em: 12 nov. 2024.
APA
Lode, A. U. J., Alon, O. E., Cederbaum, L. E., Chakrabarti, B., Chatterjee, B., Chitra, R., et al. (2021). Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. In High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019 (p. 599 ). Cham: Springer. doi:10.1007/978-3-030-66792-4_5
NLM
Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
Vancouver
Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KUMAR, Ramavarmaraja Kishor et al. Miscibility in coupled dipolar and non-dipolar bose-einstein condensates. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/1704.06826.pdf. Acesso em: 12 nov. 2024. , 2020
APA
Kumar, R. K., Muruganandam, P., Tomio, L., & Gammal, A. (2020). Miscibility in coupled dipolar and non-dipolar bose-einstein condensates. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/1704.06826.pdf
NLM
Kumar RK, Muruganandam P, Tomio L, Gammal A. Miscibility in coupled dipolar and non-dipolar bose-einstein condensates [Internet]. 2020 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/1704.06826.pdf
Vancouver
Kumar RK, Muruganandam P, Tomio L, Gammal A. Miscibility in coupled dipolar and non-dipolar bose-einstein condensates [Internet]. 2020 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/1704.06826.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KUMAR, Ramavarmaraja Kishor et al. Three-dimensional vortex structures in a rotating dipolar Bose-Einstein condensate. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/1506.08184.pdf. Acesso em: 12 nov. 2024. , 2020
APA
Kumar, R. K., Sriraman, T., Muruganandam, P., Ferreira, H. F., & Gammal, A. (2020). Three-dimensional vortex structures in a rotating dipolar Bose-Einstein condensate. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/1506.08184.pdf
NLM
Kumar RK, Sriraman T, Muruganandam P, Ferreira HF, Gammal A. Three-dimensional vortex structures in a rotating dipolar Bose-Einstein condensate [Internet]. 2020 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/1506.08184.pdf
Vancouver
Kumar RK, Sriraman T, Muruganandam P, Ferreira HF, Gammal A. Three-dimensional vortex structures in a rotating dipolar Bose-Einstein condensate [Internet]. 2020 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/pdf/1506.08184.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONÇALVES, Eduardo Sell et al. Two-photon absorption by spherical and cubic magnetic nanoparticles: external magnetic field effects on ultrafast and magnitude measurements. 2020, Anais.. Bellingham: International Society for Optical Engineering - SPIE, 2020. Disponível em: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2546036. Acesso em: 12 nov. 2024.
APA
Gonçalves, E. S., Araújo, W. W. R. de, Parekh, K., Siqueira, J., Mendonça, C. R., Figueiredo Neto, A. M., & De Boni, L. (2020). Two-photon absorption by spherical and cubic magnetic nanoparticles: external magnetic field effects on ultrafast and magnitude measurements. In Abstracts. Bellingham: International Society for Optical Engineering - SPIE. Recuperado de https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2546036
NLM
Gonçalves ES, Araújo WWR de, Parekh K, Siqueira J, Mendonça CR, Figueiredo Neto AM, De Boni L. Two-photon absorption by spherical and cubic magnetic nanoparticles: external magnetic field effects on ultrafast and magnitude measurements [Internet]. Abstracts. 2020 ;[citado 2024 nov. 12 ] Available from: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2546036
Vancouver
Gonçalves ES, Araújo WWR de, Parekh K, Siqueira J, Mendonça CR, Figueiredo Neto AM, De Boni L. Two-photon absorption by spherical and cubic magnetic nanoparticles: external magnetic field effects on ultrafast and magnitude measurements [Internet]. Abstracts. 2020 ;[citado 2024 nov. 12 ] Available from: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2546036
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONÇALVES, Eduardo Sanches et al. Influence of magnetic field on the two-photon absorption and Hyper-Rayleigh scattering of manganese-zinc ferrite nanoparticles. Journal of Physical Chemistry C, v. 124, n. 12, p. 6784-6795, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.9b10208. Acesso em: 12 nov. 2024.
APA
Gonçalves, E. S., Cocca, L. H. Z., Araújo, W. W. R. de, Parekh, K., Oliveira, C. L. P. de, Siqueira, J. P., et al. (2020). Influence of magnetic field on the two-photon absorption and Hyper-Rayleigh scattering of manganese-zinc ferrite nanoparticles. Journal of Physical Chemistry C, 124( 12), 6784-6795. doi:10.1021/acs.jpcc.9b10208
NLM
Gonçalves ES, Cocca LHZ, Araújo WWR de, Parekh K, Oliveira CLP de, Siqueira JP, Mendonça CR, De Boni L, Figueiredo Neto AM. Influence of magnetic field on the two-photon absorption and Hyper-Rayleigh scattering of manganese-zinc ferrite nanoparticles [Internet]. Journal of Physical Chemistry C. 2020 ; 124( 12): 6784-6795.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1021/acs.jpcc.9b10208
Vancouver
Gonçalves ES, Cocca LHZ, Araújo WWR de, Parekh K, Oliveira CLP de, Siqueira JP, Mendonça CR, De Boni L, Figueiredo Neto AM. Influence of magnetic field on the two-photon absorption and Hyper-Rayleigh scattering of manganese-zinc ferrite nanoparticles [Internet]. Journal of Physical Chemistry C. 2020 ; 124( 12): 6784-6795.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1021/acs.jpcc.9b10208
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ANTONOVA, A M et al. Electric response of cells containing ferrofluid particles. Journal of Electroanalytical Chemistry, v. 856, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jelechem.2019.113479. Acesso em: 12 nov. 2024.
APA
Antonova, A. M., Barbero, G., Batalioto, F., Figueiredo Neto, A. M., & Parekh, K. (2020). Electric response of cells containing ferrofluid particles. Journal of Electroanalytical Chemistry, 856. doi:10.1016/j.jelechem.2019.113479
NLM
Antonova AM, Barbero G, Batalioto F, Figueiredo Neto AM, Parekh K. Electric response of cells containing ferrofluid particles [Internet]. Journal of Electroanalytical Chemistry. 2020 ; 856[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jelechem.2019.113479
Vancouver
Antonova AM, Barbero G, Batalioto F, Figueiredo Neto AM, Parekh K. Electric response of cells containing ferrofluid particles [Internet]. Journal of Electroanalytical Chemistry. 2020 ; 856[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jelechem.2019.113479
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONÇALVES, Eduardo Sell et al. Determination of the first-order hyperpolarizability anisotropy of spherical and cubic magnetic nanoparticles. 2020, Anais.. Bellingham: International Society for Optical Engineering - SPIE, 2020. Disponível em: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2545156. Acesso em: 12 nov. 2024.
APA
Gonçalves, E. S., Cocca, L. H. Z., Araújo, W. W. R. de, Parekh, K., Oliveira, C. L. P. de, Figueiredo Neto, A. M., & De Boni, L. (2020). Determination of the first-order hyperpolarizability anisotropy of spherical and cubic magnetic nanoparticles. In Abstracts. Bellingham: International Society for Optical Engineering - SPIE. Recuperado de https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2545156
NLM
Gonçalves ES, Cocca LHZ, Araújo WWR de, Parekh K, Oliveira CLP de, Figueiredo Neto AM, De Boni L. Determination of the first-order hyperpolarizability anisotropy of spherical and cubic magnetic nanoparticles [Internet]. Abstracts. 2020 ;[citado 2024 nov. 12 ] Available from: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2545156
Vancouver
Gonçalves ES, Cocca LHZ, Araújo WWR de, Parekh K, Oliveira CLP de, Figueiredo Neto AM, De Boni L. Determination of the first-order hyperpolarizability anisotropy of spherical and cubic magnetic nanoparticles [Internet]. Abstracts. 2020 ;[citado 2024 nov. 12 ] Available from: https://spie.org/PWO/conferencedetails/quantum-dots-nanostructures-and-quantum-materials#2545156
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROY, Rhombik et al. Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice. Quantum Reports, v. 1, n. 2, p. 304-316, 2019Tradução . . Disponível em: https://doi.org/10.3390/quantum1020028. Acesso em: 12 nov. 2024.
APA
Roy, R., Camille, L., Lode, A. U. J., Gammal, A., & Chakrabarti, B. (2019). Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice. Quantum Reports, 1( 2), 304-316. doi:10.3390/quantum1020028
NLM
Roy R, Camille L, Lode AUJ, Gammal A, Chakrabarti B. Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice [Internet]. Quantum Reports. 2019 ; 1( 2): 304-316.[citado 2024 nov. 12 ] Available from: https://doi.org/10.3390/quantum1020028
Vancouver
Roy R, Camille L, Lode AUJ, Gammal A, Chakrabarti B. Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice [Internet]. Quantum Reports. 2019 ; 1( 2): 304-316.[citado 2024 nov. 12 ] Available from: https://doi.org/10.3390/quantum1020028
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PAREK, Kinnari et al. Morphological metamorphosis of magnetic nanoparticles due to the presence of rare earth atoms in the spinel structure: from spheres to cubes. Materials Chemistry and Physics, v. 222, n. ja 2019, p. 217-226, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.matchemphys.2018.10.020. Acesso em: 12 nov. 2024.
APA
Parek, K., Espinosa, D. H. G., Reis, D., Wlysses, W., Figueiredo Neto, A. M., & Oliveira, C. L. P. de. (2019). Morphological metamorphosis of magnetic nanoparticles due to the presence of rare earth atoms in the spinel structure: from spheres to cubes. Materials Chemistry and Physics, 222( ja 2019), 217-226. doi:10.1016/j.matchemphys.2018.10.020
NLM
Parek K, Espinosa DHG, Reis D, Wlysses W, Figueiredo Neto AM, Oliveira CLP de. Morphological metamorphosis of magnetic nanoparticles due to the presence of rare earth atoms in the spinel structure: from spheres to cubes [Internet]. Materials Chemistry and Physics. 2019 ; 222( ja 2019): 217-226.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.matchemphys.2018.10.020
Vancouver
Parek K, Espinosa DHG, Reis D, Wlysses W, Figueiredo Neto AM, Oliveira CLP de. Morphological metamorphosis of magnetic nanoparticles due to the presence of rare earth atoms in the spinel structure: from spheres to cubes [Internet]. Materials Chemistry and Physics. 2019 ; 222( ja 2019): 217-226.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.matchemphys.2018.10.020
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BERA, S. et al. Sorting fermionization from crystallization in many-boson wavefunctions. Scientific Reports, v. 9, p. 17873-1-17873-14, 2019Tradução . . Disponível em: https://doi.org/10.1038/s41598-019-53179-1. Acesso em: 12 nov. 2024.
APA
Bera, S., Chakrabarti, B., Gammal, A., Tsatsos, M. C., Lekala, M. L., Chatterjee, B., et al. (2019). Sorting fermionization from crystallization in many-boson wavefunctions. Scientific Reports, 9, 17873-1-17873-14. doi:10.1038/s41598-019-53179-1
NLM
Bera S, Chakrabarti B, Gammal A, Tsatsos MC, Lekala ML, Chatterjee B, Lévêque C, Lode .AUJ. Sorting fermionization from crystallization in many-boson wavefunctions [Internet]. Scientific Reports. 2019 ; 9 17873-1-17873-14.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-019-53179-1
Vancouver
Bera S, Chakrabarti B, Gammal A, Tsatsos MC, Lekala ML, Chatterjee B, Lévêque C, Lode .AUJ. Sorting fermionization from crystallization in many-boson wavefunctions [Internet]. Scientific Reports. 2019 ; 9 17873-1-17873-14.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-019-53179-1
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONÇALVES, Eduardo Sell et al. Nanoparticle shape effect on the determination of the first-order hyperpolarizability anisotropy of magnetic colloids. 2019, Anais.. Warrendale: Materials Research Society - MRS, 2019. Disponível em: https://www.mrs.org/docs/default-source/meetings-events/fall-meetings/2019/abstract-book.pdf?sfvrsn=be3a250d_4. Acesso em: 12 nov. 2024.
APA
Gonçalves, E. S., Cocca, L. H. Z., Wlysses, W., Parekh, K., Oliveira, C., Figueiredo Neto, A. M., & De Boni, L. (2019). Nanoparticle shape effect on the determination of the first-order hyperpolarizability anisotropy of magnetic colloids. In Abstract book. Warrendale: Materials Research Society - MRS. Recuperado de https://www.mrs.org/docs/default-source/meetings-events/fall-meetings/2019/abstract-book.pdf?sfvrsn=be3a250d_4
NLM
Gonçalves ES, Cocca LHZ, Wlysses W, Parekh K, Oliveira C, Figueiredo Neto AM, De Boni L. Nanoparticle shape effect on the determination of the first-order hyperpolarizability anisotropy of magnetic colloids [Internet]. Abstract book. 2019 ;[citado 2024 nov. 12 ] Available from: https://www.mrs.org/docs/default-source/meetings-events/fall-meetings/2019/abstract-book.pdf?sfvrsn=be3a250d_4
Vancouver
Gonçalves ES, Cocca LHZ, Wlysses W, Parekh K, Oliveira C, Figueiredo Neto AM, De Boni L. Nanoparticle shape effect on the determination of the first-order hyperpolarizability anisotropy of magnetic colloids [Internet]. Abstract book. 2019 ;[citado 2024 nov. 12 ] Available from: https://www.mrs.org/docs/default-source/meetings-events/fall-meetings/2019/abstract-book.pdf?sfvrsn=be3a250d_4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BERA, S. et al. Sorting fermionization from crystallization in many-boson wavefunctions. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/abs/1806.02539. Acesso em: 12 nov. 2024. , 2019
APA
Bera, S., Chakrabarti, B., Tsatsos, M. C., Lekala, M. L., Chatterjee, B., Levêque, C., et al. (2019). Sorting fermionization from crystallization in many-boson wavefunctions. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/abs/1806.02539
NLM
Bera S, Chakrabarti B, Tsatsos MC, Lekala ML, Chatterjee B, Levêque C, Lode AUJ, Gammal A. Sorting fermionization from crystallization in many-boson wavefunctions [Internet]. 2019 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/abs/1806.02539
Vancouver
Bera S, Chakrabarti B, Tsatsos MC, Lekala ML, Chatterjee B, Levêque C, Lode AUJ, Gammal A. Sorting fermionization from crystallization in many-boson wavefunctions [Internet]. 2019 ;[citado 2024 nov. 12 ] Available from: https://arxiv.org/abs/1806.02539