Source: Materials Chemistry Frontiers. Unidades: ICMC, IQSC, IFSC
Subjects: CORONAVIRUS, COVID-19, DIAGNÓSTICO, SENSOR, SEQUÊNCIA DO DNA, VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOARES, Juliana Coatrini et al. Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques. Materials Chemistry Frontiers, v. 5, n. 15, p. 5658-5670, 2021Tradução . . Disponível em: https://doi.org/10.1039/D1QM00665G. Acesso em: 10 nov. 2024.APA
Soares, J. C., Soares, A. C., Rodrigues, V. da C., Oiticica, P. R. A., Raymundo-Pereira, P. A., Bott Neto, J. L., et al. (2021). Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques. Materials Chemistry Frontiers, 5( 15), 5658-5670. doi:10.1039/D1QM00665GNLM
Soares JC, Soares AC, Rodrigues V da C, Oiticica PRA, Raymundo-Pereira PA, Bott Neto JL, Buscaglia LA, Castro LDC de, Ribas LC, Scabini LF dos S, Brazaca LC, Correa DS, Mattoso LHC, Oliveira MCF de, Carvalho ACP de LF de, Carrilho E, Bruno OM, Melendez ME, Oliveira Junior ON de. Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques [Internet]. Materials Chemistry Frontiers. 2021 ; 5( 15): 5658-5670.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1039/D1QM00665GVancouver
Soares JC, Soares AC, Rodrigues V da C, Oiticica PRA, Raymundo-Pereira PA, Bott Neto JL, Buscaglia LA, Castro LDC de, Ribas LC, Scabini LF dos S, Brazaca LC, Correa DS, Mattoso LHC, Oliveira MCF de, Carvalho ACP de LF de, Carrilho E, Bruno OM, Melendez ME, Oliveira Junior ON de. Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques [Internet]. Materials Chemistry Frontiers. 2021 ; 5( 15): 5658-5670.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1039/D1QM00665G