Filtros : "Índia" "Communications in Algebra" Removidos: "Japão" "República Tcheca" "Santos, Manoel Antônio dos" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, v. 48, n. 9, p. 3916-3921, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1751848. Acesso em: 16 nov. 2024.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAO, S. Eswara e FUTORNY, Vyacheslav e SHARMA, Sachin S. Weyl modules associated to Kac–Moody Lie algebras. Communications in Algebra, v. 44, n. 12, p. 5045-5057, 2016Tradução . . Disponível em: https://doi.org/10.1080/00927872.2015.1130143. Acesso em: 16 nov. 2024.
    • APA

      Rao, S. E., Futorny, V., & Sharma, S. S. (2016). Weyl modules associated to Kac–Moody Lie algebras. Communications in Algebra, 44( 12), 5045-5057. doi:10.1080/00927872.2015.1130143
    • NLM

      Rao SE, Futorny V, Sharma SS. Weyl modules associated to Kac–Moody Lie algebras [Internet]. Communications in Algebra. 2016 ; 44( 12): 5045-5057.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2015.1130143
    • Vancouver

      Rao SE, Futorny V, Sharma SS. Weyl modules associated to Kac–Moody Lie algebras [Internet]. Communications in Algebra. 2016 ; 44( 12): 5045-5057.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2015.1130143
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAO, S. Eswara e FUTORNY, Vyacheslav. Representations of the Loop Kac-Moody Lie algebras. Communications in Algebra, v. 41, n. 10, p. 3775-3792, 2013Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.677891. Acesso em: 16 nov. 2024.
    • APA

      Rao, S. E., & Futorny, V. (2013). Representations of the Loop Kac-Moody Lie algebras. Communications in Algebra, 41( 10), 3775-3792. doi:10.1080/00927872.2012.677891
    • NLM

      Rao SE, Futorny V. Representations of the Loop Kac-Moody Lie algebras [Internet]. Communications in Algebra. 2013 ;41( 10): 3775-3792.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2012.677891
    • Vancouver

      Rao SE, Futorny V. Representations of the Loop Kac-Moody Lie algebras [Internet]. Communications in Algebra. 2013 ;41( 10): 3775-3792.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/00927872.2012.677891

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024