Filtros : "Polônia" "2001" Removidos: " IFSC777" "FIDELIS, CARLOS EDUARDO" Limpar

Filtros



Refine with date range


  • Source: Proceedings. Conference titles: International Workshop on Approximation Algorithms for Combinatorial Optimization Problems - APPROX 2001. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALON, Noga et al. Near-optimum universal graphs for graphs with bounded degrees. 2001, Anais.. Berlin: Springer, 2001. Disponível em: https://doi.org/10.1007/3-540-44666-4_20. Acesso em: 18 nov. 2024.
    • APA

      Alon, N., Capalbo, M., Wakabayashi, Y., Rodl, V., Rucinski, A., & Szemerédi, E. (2001). Near-optimum universal graphs for graphs with bounded degrees. In Proceedings. Berlin: Springer. doi:10.1007/3-540-44666-4_20
    • NLM

      Alon N, Capalbo M, Wakabayashi Y, Rodl V, Rucinski A, Szemerédi E. Near-optimum universal graphs for graphs with bounded degrees [Internet]. Proceedings. 2001 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/3-540-44666-4_20
    • Vancouver

      Alon N, Capalbo M, Wakabayashi Y, Rodl V, Rucinski A, Szemerédi E. Near-optimum universal graphs for graphs with bounded degrees [Internet]. Proceedings. 2001 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/3-540-44666-4_20
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, v. 197, n. 2, p. 291-300, 2001Tradução . . Disponível em: https://doi.org/10.2140/pjm.2001.197.291. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, 197( 2), 291-300. doi:10.2140/pjm.2001.197.291
    • NLM

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
    • Vancouver

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
  • Source: Cahiers de Topologie et Géometrie Differentiélle Catégoriques. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Equivariant Gottlieb groups. Cahiers de Topologie et Géometrie Differentiélle Catégoriques, v. 42, n. 2, p. 83-100, 2001Tradução . . Disponível em: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Equivariant Gottlieb groups. Cahiers de Topologie et Géometrie Differentiélle Catégoriques, 42( 2), 83-100. Recuperado de http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
    • NLM

      Golasinski M, Gonçalves DL. Equivariant Gottlieb groups [Internet]. Cahiers de Topologie et Géometrie Differentiélle Catégoriques. 2001 ; 42( 2): 83-100.[citado 2024 nov. 18 ] Available from: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
    • Vancouver

      Golasinski M, Gonçalves DL. Equivariant Gottlieb groups [Internet]. Cahiers de Topologie et Géometrie Differentiélle Catégoriques. 2001 ; 42( 2): 83-100.[citado 2024 nov. 18 ] Available from: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
  • Source: Hiroshima Mathematical Journal. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Homotopy spherical space forms - a numerical bound for homotopy types. Hiroshima Mathematical Journal, v. 31, n. 1, p. 107-116, 2001Tradução . . Disponível em: https://doi.org/10.32917/hmj/1151511151. Acesso em: 18 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Homotopy spherical space forms - a numerical bound for homotopy types. Hiroshima Mathematical Journal, 31( 1), 107-116. doi:10.32917/hmj/1151511151
    • NLM

      Golasinski M, Gonçalves DL. Homotopy spherical space forms - a numerical bound for homotopy types [Internet]. Hiroshima Mathematical Journal. 2001 ; 31( 1): 107-116.[citado 2024 nov. 18 ] Available from: https://doi.org/10.32917/hmj/1151511151
    • Vancouver

      Golasinski M, Gonçalves DL. Homotopy spherical space forms - a numerical bound for homotopy types [Internet]. Hiroshima Mathematical Journal. 2001 ; 31( 1): 107-116.[citado 2024 nov. 18 ] Available from: https://doi.org/10.32917/hmj/1151511151

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024