Filtros : "Polônia" "Golasinski, Marek" Removidos: "IQ004" "Universidade de São Paulo, Ribeirão Preto, SP" "Hernandes, Antônio Carlos" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: GRUPOS DE TRANSFORMAÇÃO, GRUPOS FINITOS, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e JIMENEZ, Rolando. Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, v. 61, n. 2, p. 305-327, 2018Tradução . . Disponível em: https://doi.org/10.1017/s0013091517000207. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Jimenez, R. (2018). Free and properly discontinuous actions of groups on homotopy 2n-spheres. Proceedings of the Edinburgh Mathematical Society, 61( 2), 305-327. doi:10.1017/s0013091517000207
    • NLM

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/s0013091517000207
    • Vancouver

      Golasinski M, Gonçalves DL, Jimenez R. Free and properly discontinuous actions of groups on homotopy 2n-spheres [Internet]. Proceedings of the Edinburgh Mathematical Society. 2018 ; 61( 2): 305-327.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/s0013091517000207
  • Source: Journal of Homotopy and Related Structures. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, v. 12, n. 3, p. 707-726, 2017Tradução . . Disponível em: https://doi.org/10.1007/s40062-016-0145-z. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. (2017). On the group structure of [J(X),Ω(Y)]. Journal of Homotopy and Related Structures, 12( 3), 707-726. doi:10.1007%2Fs40062-016-0145-z
    • NLM

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40062-016-0145-z
    • Vancouver

      Golasinski M, Gonçalves DL, Wong P. On the group structure of [J(X),Ω(Y)] [Internet]. Journal of Homotopy and Related Structures. 2017 ; 12( 3): 707-726.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40062-016-0145-z
  • Source: Journal of Homotopy and Related Structures. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2. Journal of Homotopy and Related Structures, v. 11, n. 4, p. 803-824, 2016Tradução . . Disponível em: https://doi.org/10.1007/s40062-016-0158-7. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2016). Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2. Journal of Homotopy and Related Structures, 11( 4), 803-824. doi:10.1007/s40062-016-0158-7
    • NLM

      Golasinski M, Gonçalves DL. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2 [Internet]. Journal of Homotopy and Related Structures. 2016 ; 11( 4): 803-824.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40062-016-0158-7
    • Vancouver

      Golasinski M, Gonçalves DL. Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2 [Internet]. Journal of Homotopy and Related Structures. 2016 ; 11( 4): 803-824.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40062-016-0158-7
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms: Homotopy self-equivalences and homotopy types, the case of the groups Z/a (Z/b × TL2(Fp)). Topology and its Applications, v. 156, n. 17, p. 2726-2734, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2009.08.004. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2009). Spherical space forms: Homotopy self-equivalences and homotopy types, the case of the groups Z/a (Z/b × TL2(Fp)). Topology and its Applications, 156( 17), 2726-2734. doi:10.1016/j.topol.2009.08.004
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms: Homotopy self-equivalences and homotopy types, the case of the groups Z/a (Z/b × TL2(Fp)) [Internet]. Topology and its Applications. 2009 ; 156( 17): 2726-2734.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2009.08.004
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms: Homotopy self-equivalences and homotopy types, the case of the groups Z/a (Z/b × TL2(Fp)) [Internet]. Topology and its Applications. 2009 ; 156( 17): 2726-2734.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2009.08.004
  • Source: Manuscripta Mathematica. Unidade: IME

    Assunto: GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. On automorphisms of split metacyclic groups. Manuscripta Mathematica, v. 128, n. 2, p. 251-273, 2009Tradução . . Disponível em: https://doi.org/10.1007%2Fs00229-008-0233-4. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2009). On automorphisms of split metacyclic groups. Manuscripta Mathematica, 128( 2), 251-273. doi:10.1007%2Fs00229-008-0233-4
    • NLM

      Golasinski M, Gonçalves DL. On automorphisms of split metacyclic groups [Internet]. Manuscripta Mathematica. 2009 ; 128( 2): 251-273.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007%2Fs00229-008-0233-4
    • Vancouver

      Golasinski M, Gonçalves DL. On automorphisms of split metacyclic groups [Internet]. Manuscripta Mathematica. 2009 ; 128( 2): 251-273.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007%2Fs00229-008-0233-4
  • Source: Banach Center Publications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter Negai-Sing. A note on generalized equivariant homotopy groups. Banach Center Publications, v. 85, p. 179-185, 2009Tradução . . Disponível em: https://doi.org/10.4064/bc85-0-12. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. N. -S. (2009). A note on generalized equivariant homotopy groups. Banach Center Publications, 85, 179-185. doi:10.4064/bc85-0-12
    • NLM

      Golasinski M, Gonçalves DL, Wong PN-S. A note on generalized equivariant homotopy groups [Internet]. Banach Center Publications. 2009 ; 85 179-185.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/bc85-0-12
    • Vancouver

      Golasinski M, Gonçalves DL, Wong PN-S. A note on generalized equivariant homotopy groups [Internet]. Banach Center Publications. 2009 ; 85 179-185.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/bc85-0-12
  • Source: Mathematical Journal of Okayama University. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. On Fox spaces and Jacobi identities. Mathematical Journal of Okayama University, v. 50, p. 161-176, 2008Tradução . . Disponível em: https://core.ac.uk/reader/12532435. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2008). On Fox spaces and Jacobi identities. Mathematical Journal of Okayama University, 50, 161-176. Recuperado de https://core.ac.uk/reader/12532435
    • NLM

      Golasinski M, Gonçalves DL. On Fox spaces and Jacobi identities [Internet]. Mathematical Journal of Okayama University. 2008 ; 50 161-176.[citado 2024 nov. 09 ] Available from: https://core.ac.uk/reader/12532435
    • Vancouver

      Golasinski M, Gonçalves DL. On Fox spaces and Jacobi identities [Internet]. Mathematical Journal of Okayama University. 2008 ; 50 161-176.[citado 2024 nov. 09 ] Available from: https://core.ac.uk/reader/12532435
  • Source: Cahiers de Topologie et Géométrie Différentielle Catégoriques. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter Negai-Sing. Equivariant evaluation subgroups and Rhodes groups. Cahiers de Topologie et Géométrie Différentielle Catégoriques, v. 48, n. 1, p. 55-69, 2007Tradução . . Disponível em: http://www.numdam.org/article/CTGDC_2007__48_1_55_0.pdf. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. N. -S. (2007). Equivariant evaluation subgroups and Rhodes groups. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 48( 1), 55-69. Recuperado de http://www.numdam.org/article/CTGDC_2007__48_1_55_0.pdf
    • NLM

      Golasinski M, Gonçalves DL, Wong PN-S. Equivariant evaluation subgroups and Rhodes groups [Internet]. Cahiers de Topologie et Géométrie Différentielle Catégoriques. 2007 ; 48( 1): 55-69.[citado 2024 nov. 09 ] Available from: http://www.numdam.org/article/CTGDC_2007__48_1_55_0.pdf
    • Vancouver

      Golasinski M, Gonçalves DL, Wong PN-S. Equivariant evaluation subgroups and Rhodes groups [Internet]. Cahiers de Topologie et Géométrie Différentielle Catégoriques. 2007 ; 48( 1): 55-69.[citado 2024 nov. 09 ] Available from: http://www.numdam.org/article/CTGDC_2007__48_1_55_0.pdf
  • Source: Canadian Mathematical Bulletin. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms: homotopy types and self-equivalences for the group (Z/a x Z/b) x SL2 (F-p). Canadian Mathematical Bulletin, v. 50, n. 2, p. 206-214, 2007Tradução . . Disponível em: https://doi.org/10.4153/CMB-2007-022-5. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2007). Spherical space forms: homotopy types and self-equivalences for the group (Z/a x Z/b) x SL2 (F-p). Canadian Mathematical Bulletin, 50( 2), 206-214. doi:10.4153/CMB-2007-022-5
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms: homotopy types and self-equivalences for the group (Z/a x Z/b) x SL2 (F-p) [Internet]. Canadian Mathematical Bulletin. 2007 ; 50( 2): 206-214.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4153/CMB-2007-022-5
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms: homotopy types and self-equivalences for the group (Z/a x Z/b) x SL2 (F-p) [Internet]. Canadian Mathematical Bulletin. 2007 ; 50( 2): 206-214.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4153/CMB-2007-022-5
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, v. 146/147, p. 451-470, 2005Tradução . . Disponível em: https://doi.org/10.2307/3062102. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2005). Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, 146/147, 451-470. doi:10.2307/3062102
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2307/3062102
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2307/3062102
  • Source: Categorical decomposition techniques in algebraic topology. Conference titles: International Conference in Algebraic Topology. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms: homotopy types and self-equivalences. 2004, Anais.. Basel: Birkhauser, 2004. Disponível em: https://doi.org/10.1007/978-3-0348-7863-0_9. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2004). Spherical space forms: homotopy types and self-equivalences. In Categorical decomposition techniques in algebraic topology. Basel: Birkhauser. doi:10.1007/978-3-0348-7863-0_9
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms: homotopy types and self-equivalences [Internet]. Categorical decomposition techniques in algebraic topology. 2004 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-0348-7863-0_9
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms: homotopy types and self-equivalences [Internet]. Categorical decomposition techniques in algebraic topology. 2004 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-0348-7863-0_9
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, v. 197, n. 2, p. 291-300, 2001Tradução . . Disponível em: https://doi.org/10.2140/pjm.2001.197.291. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, 197( 2), 291-300. doi:10.2140/pjm.2001.197.291
    • NLM

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
    • Vancouver

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
  • Source: Cahiers de Topologie et Géometrie Differentiélle Catégoriques. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Equivariant Gottlieb groups. Cahiers de Topologie et Géometrie Differentiélle Catégoriques, v. 42, n. 2, p. 83-100, 2001Tradução . . Disponível em: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Equivariant Gottlieb groups. Cahiers de Topologie et Géometrie Differentiélle Catégoriques, 42( 2), 83-100. Recuperado de http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
    • NLM

      Golasinski M, Gonçalves DL. Equivariant Gottlieb groups [Internet]. Cahiers de Topologie et Géometrie Differentiélle Catégoriques. 2001 ; 42( 2): 83-100.[citado 2024 nov. 09 ] Available from: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
    • Vancouver

      Golasinski M, Gonçalves DL. Equivariant Gottlieb groups [Internet]. Cahiers de Topologie et Géometrie Differentiélle Catégoriques. 2001 ; 42( 2): 83-100.[citado 2024 nov. 09 ] Available from: http://www.numdam.org/article/CTGDC_2001__42_2_83_0.pdf
  • Source: Hiroshima Mathematical Journal. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Homotopy spherical space forms - a numerical bound for homotopy types. Hiroshima Mathematical Journal, v. 31, n. 1, p. 107-116, 2001Tradução . . Disponível em: https://doi.org/10.32917/hmj/1151511151. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Homotopy spherical space forms - a numerical bound for homotopy types. Hiroshima Mathematical Journal, 31( 1), 107-116. doi:10.32917/hmj/1151511151
    • NLM

      Golasinski M, Gonçalves DL. Homotopy spherical space forms - a numerical bound for homotopy types [Internet]. Hiroshima Mathematical Journal. 2001 ; 31( 1): 107-116.[citado 2024 nov. 09 ] Available from: https://doi.org/10.32917/hmj/1151511151
    • Vancouver

      Golasinski M, Gonçalves DL. Homotopy spherical space forms - a numerical bound for homotopy types [Internet]. Hiroshima Mathematical Journal. 2001 ; 31( 1): 107-116.[citado 2024 nov. 09 ] Available from: https://doi.org/10.32917/hmj/1151511151
  • Source: Bulletin des Sciences Mathematiques. Unidade: IME

    Subjects: TEORIAS DE HOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Generalized Eilenberg-Zilber type theorem and its equivariant applications. Bulletin des Sciences Mathematiques, v. 123, n. 4, p. 285-298, 1999Tradução . . Disponível em: https://doi.org/10.1016/S0007-4497(99)00003-2. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1999). Generalized Eilenberg-Zilber type theorem and its equivariant applications. Bulletin des Sciences Mathematiques, 123( 4), 285-298. doi:10.1016/S0007-4497(99)00003-2
    • NLM

      Golasinski M, Gonçalves DL. Generalized Eilenberg-Zilber type theorem and its equivariant applications [Internet]. Bulletin des Sciences Mathematiques. 1999 ; 123( 4): 285-298.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/S0007-4497(99)00003-2
    • Vancouver

      Golasinski M, Gonçalves DL. Generalized Eilenberg-Zilber type theorem and its equivariant applications [Internet]. Bulletin des Sciences Mathematiques. 1999 ; 123( 4): 285-298.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/S0007-4497(99)00003-2
  • Source: Colloquium Mathematicum. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Comultiplications of the wedge of two Moore spaces. Colloquium Mathematicum, v. 76, n. 2, p. 229-242, 1998Tradução . . Disponível em: https://doi.org/10.4064/cm-76-2-229-242. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1998). Comultiplications of the wedge of two Moore spaces. Colloquium Mathematicum, 76( 2), 229-242. doi:10.4064/cm-76-2-229-242
    • NLM

      Golasinski M, Gonçalves DL. Comultiplications of the wedge of two Moore spaces [Internet]. Colloquium Mathematicum. 1998 ; 76( 2): 229-242.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/cm-76-2-229-242
    • Vancouver

      Golasinski M, Gonçalves DL. Comultiplications of the wedge of two Moore spaces [Internet]. Colloquium Mathematicum. 1998 ; 76( 2): 229-242.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/cm-76-2-229-242
  • Source: Mathematica Scandinavica. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. On co-Moore spaces. Mathematica Scandinavica, v. 83, n. 1, p. 42-52, 1998Tradução . . Disponível em: https://doi.org/10.7146/math.scand.a-13841. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1998). On co-Moore spaces. Mathematica Scandinavica, 83( 1), 42-52. doi:10.7146/math.scand.a-13841
    • NLM

      Golasinski M, Gonçalves DL. On co-Moore spaces [Internet]. Mathematica Scandinavica. 1998 ; 83( 1): 42-52.[citado 2024 nov. 09 ] Available from: https://doi.org/10.7146/math.scand.a-13841
    • Vancouver

      Golasinski M, Gonçalves DL. On co-Moore spaces [Internet]. Mathematica Scandinavica. 1998 ; 83( 1): 42-52.[citado 2024 nov. 09 ] Available from: https://doi.org/10.7146/math.scand.a-13841
  • Source: Manuscripta Mathematica. Unidade: IME

    Assunto: COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Isomorphic cohomology yelds isomorphic homology. Manuscripta Mathematica, v. 92, n. 1, p. 65-75, 1997Tradução . . Disponível em: https://doi.org/10.1007/bf02678181. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1997). Isomorphic cohomology yelds isomorphic homology. Manuscripta Mathematica, 92( 1), 65-75. doi:10.1007/bf02678181
    • NLM

      Golasinski M, Gonçalves DL. Isomorphic cohomology yelds isomorphic homology [Internet]. Manuscripta Mathematica. 1997 ; 92( 1): 65-75.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/bf02678181
    • Vancouver

      Golasinski M, Gonçalves DL. Isomorphic cohomology yelds isomorphic homology [Internet]. Manuscripta Mathematica. 1997 ; 92( 1): 65-75.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/bf02678181
  • Source: Bulletin of the Belgian Mathematical Society - Simon Stevin. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Equivariant weak n-equivalences. Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 4, n. 2, p. 265-276, 1997Tradução . . Disponível em: https://doi.org/10.36045/bbms/1105731658. Acesso em: 09 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1997). Equivariant weak n-equivalences. Bulletin of the Belgian Mathematical Society - Simon Stevin, 4( 2), 265-276. doi:10.36045/bbms/1105731658
    • NLM

      Golasinski M, Gonçalves DL. Equivariant weak n-equivalences [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 1997 ; 4( 2): 265-276.[citado 2024 nov. 09 ] Available from: https://doi.org/10.36045/bbms/1105731658
    • Vancouver

      Golasinski M, Gonçalves DL. Equivariant weak n-equivalences [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 1997 ; 4( 2): 265-276.[citado 2024 nov. 09 ] Available from: https://doi.org/10.36045/bbms/1105731658

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024