Filtros : "Espanha" "ICMC" Removidos: "ARTES" "HERNANDES, ANTONIO CARLOS" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational Dynamics. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 31 out. 2024.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 31 out. 2024.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: ESPAÇOS DE INTERPOLAÇÃO, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRÊA, Willian Hans Goes e CABELLO SÁNCHEZ, Félix. Complex interpolation of matrix weighted 'L IND. P' spaces and commutator estimates. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 31 out. 2024.
    • APA

      Corrêa, W. H. G., & Cabello Sánchez, F. (2024). Complex interpolation of matrix weighted 'L IND. P' spaces and commutator estimates. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Corrêa WHG, Cabello Sánchez F. Complex interpolation of matrix weighted 'L IND. P' spaces and commutator estimates [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Corrêa WHG, Cabello Sánchez F. Complex interpolation of matrix weighted 'L IND. P' spaces and commutator estimates [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Studies in Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, v. 153, n. 2, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1111/sapm.12724. Acesso em: 31 out. 2024.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2024). Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, 153( 2), 1-27. doi:10.1111/sapm.12724
    • NLM

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.1111/sapm.12724
    • Vancouver

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.1111/sapm.12724
  • Source: Advances in Differential Equations. Unidades: ICMC, IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María et al. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, v. Jan.-Fe 2024, n. 1-2, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.57262/ade029-0102-1. Acesso em: 31 out. 2024.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Moreira, E. M., & Valero, J. (2024). Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, Jan.-Fe 2024( 1-2), 1-26. doi:10.57262/ade029-0102-1
    • NLM

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.57262/ade029-0102-1
    • Vancouver

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.57262/ade029-0102-1
  • Source: Results in Mathematics. Unidades: ICMC, IME

    Subjects: ANÁLISE FUNCIONAL, INTERPOLAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Jesús M. F et al. Interpolator symmetries and new Kalton-Peck spaces. Results in Mathematics, v. 79, n. artigo 108, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02128-0. Acesso em: 31 out. 2024.
    • APA

      Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V., & González, M. (2024). Interpolator symmetries and new Kalton-Peck spaces. Results in Mathematics, 79( artigo 108), 1-28. doi:10.1007/s00025-024-02128-0
    • NLM

      Castillo JMF, Corrêa WHG, Ferenczi V, González M. Interpolator symmetries and new Kalton-Peck spaces [Internet]. Results in Mathematics. 2024 ; 79( artigo 108): 1-28.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00025-024-02128-0
    • Vancouver

      Castillo JMF, Corrêa WHG, Ferenczi V, González M. Interpolator symmetries and new Kalton-Peck spaces [Internet]. Results in Mathematics. 2024 ; 79( artigo 108): 1-28.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00025-024-02128-0
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 31 out. 2024.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Research in the Mathematical Sciences. Unidade: ICMC

    Assunto: SINGULARIDADES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIVIÀ-AUSINA, Carles e KOURLIOUROS, Konstantinos e RUAS, Maria Aparecida Soares. Bruce-Roberts numbers and quasihomogeneous functions on analytic varieties. Research in the Mathematical Sciences, v. 11, n. 3, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40687-024-00458-7. Acesso em: 31 out. 2024.
    • APA

      Bivià-Ausina, C., Kourliouros, K., & Ruas, M. A. S. (2024). Bruce-Roberts numbers and quasihomogeneous functions on analytic varieties. Research in the Mathematical Sciences, 11( 3), 1-23. doi:10.1007/s40687-024-00458-7
    • NLM

      Bivià-Ausina C, Kourliouros K, Ruas MAS. Bruce-Roberts numbers and quasihomogeneous functions on analytic varieties [Internet]. Research in the Mathematical Sciences. 2024 ; 11( 3): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00458-7
    • Vancouver

      Bivià-Ausina C, Kourliouros K, Ruas MAS. Bruce-Roberts numbers and quasihomogeneous functions on analytic varieties [Internet]. Research in the Mathematical Sciences. 2024 ; 11( 3): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00458-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 31 out. 2024.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Time-dependent differential processes and their relationship with the fractal dimension theory. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 31 out. 2024.
    • APA

      López-Lázaro, H., Carvalho, A. N. de, Caraballo, T., & Cunha, A. C. (2024). Time-dependent differential processes and their relationship with the fractal dimension theory. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 31 out. 2024.
    • APA

      Cunha, A. C., Carvalho, A. N. de, Cui, H., & Langa, J. A. (2024). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Cunha AC, Carvalho AN de, Cui H, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Cunha AC, Carvalho AN de, Cui H, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 31 out. 2024.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JULIO PÉREZ, Yessica Yuliet e CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 31 out. 2024.
    • APA

      Julio Pérez, Y. Y., Caraballo, T., & Carvalho, A. N. de. (2024). Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Nonlinear analysis : real world applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, v. 79, p. 1-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2024.104124. Acesso em: 31 out. 2024.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2024). On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, 79, 1-15. doi:10.1016/j.nonrwa.2024.104124
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e RODERO, Ana Livia e TORREGROSA, Joan. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 43, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.43. Acesso em: 31 out. 2024.
    • APA

      Buzzi, C. A., Rodero, A. L., & Torregrosa, J. (2024). 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 43), 1-27. doi:10.14232/ejqtde.2024.1.43
    • NLM

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
    • Vancouver

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidades: ICMC, IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 31 out. 2024.
    • APA

      Carvalho, A. N. de, Arrieta, J. M., Moreira, E. M., & Valero, J. (2024). Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Carvalho AN de, Arrieta JM, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Carvalho AN de, Arrieta JM, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. [Internet]. Abstracts. 2024 ;[citado 2024 out. 31 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DOS NÓS, FIBRAÇÕES, GEOMETRIA ALGÉBRICA REAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO DOS SANTOS, Raimundo Nonato e BODE, Benjamin e SANCHEZ QUICENO, Eder Leandro. Links of singularities of inner non-degenerate mixed functions. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, n. 3, p. 1-49, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-024-00407-6. Acesso em: 31 out. 2024.
    • APA

      Araújo dos Santos, R. N., Bode, B., & Sanchez Quiceno, E. L. (2024). Links of singularities of inner non-degenerate mixed functions. Bulletin of the Brazilian Mathematical Society : New Series, 55( 3), 1-49. doi:10.1007/s00574-024-00407-6
    • NLM

      Araújo dos Santos RN, Bode B, Sanchez Quiceno EL. Links of singularities of inner non-degenerate mixed functions [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( 3): 1-49.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-024-00407-6
    • Vancouver

      Araújo dos Santos RN, Bode B, Sanchez Quiceno EL. Links of singularities of inner non-degenerate mixed functions [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( 3): 1-49.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-024-00407-6
  • Source: Research in the Mathematical Sciences. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SUBVARIEDADES, GEOMETRIA SIMPLÉTICA

    Disponível em 2025-06-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e ROMERO FUSTER, Maria Del Carmen e ZANARDO, Maria Carolina. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴. Research in the Mathematical Sciences, v. 11, p. 1-18, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40687-024-00450-1. Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C., Romero Fuster, M. D. C., & Zanardo, M. C. (2024). Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴. Research in the Mathematical Sciences, 11, 1-18. doi:10.1007/s40687-024-00450-1
    • NLM

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴ [Internet]. Research in the Mathematical Sciences. 2024 ; 11 1-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00450-1
    • Vancouver

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴ [Internet]. Research in the Mathematical Sciences. 2024 ; 11 1-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00450-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, v. 36, p. S65-S75, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 31 out. 2024.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2024). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 36, S65-S75. doi:10.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, SISTEMAS DINÂMICOS, MÉTODOS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo e BEATRIZ, Ester. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, v. 389, n. 4, p. 4125-4147, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02740-5. Acesso em: 31 out. 2024.
    • APA

      Lappicy, P., & Beatriz, E. (2024). An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, 389( 4), 4125-4147. doi:10.1007/s00208-023-02740-5
    • NLM

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
    • Vancouver

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02740-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024