Filtros : base.keyword"Produção científica" Limpar

Filtros



Limitar por data


  • Fonte: Random Structures & Algorithms. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLARES, Maurício; KOHAYAKAWA, Yoshiharu; MORRIS, Robert; MOTA, Guilherme Oliveira. Counting restricted orientations of random graphs. Random Structures & Algorithms, Hoboken, John Wiley & Sons, v. 56, n. 4, p. 1016-1030, 2020. Disponível em: < https://doi.org/10.1002/rsa.20904 > DOI: 10.1002/rsa.20904.
    • APA

      Collares, M., Kohayakawa, Y., Morris, R., & Mota, G. O. (2020). Counting restricted orientations of random graphs. Random Structures & Algorithms, 56( 4), 1016-1030. doi:10.1002/rsa.20904
    • NLM

      Collares M, Kohayakawa Y, Morris R, Mota GO. Counting restricted orientations of random graphs [Internet]. Random Structures & Algorithms. 2020 ; 56( 4): 1016-1030.Available from: https://doi.org/10.1002/rsa.20904
    • Vancouver

      Collares M, Kohayakawa Y, Morris R, Mota GO. Counting restricted orientations of random graphs [Internet]. Random Structures & Algorithms. 2020 ; 56( 4): 1016-1030.Available from: https://doi.org/10.1002/rsa.20904
  • Fonte: Journal of Combinatorial Theory, Series B. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; JENSSEN, Matthew; KOHAYAKAWA, Yoshiharu; MOTA, Guilherme Oliveira; ROBERTS, Barnaby. The multicolour size-Ramsey number of powers of paths. Journal of Combinatorial Theory, Series B, New York, Elsevier, v. 145, p. 359-375, 2020. Disponível em: < https://doi.org/10.1016/j.jctb.2020.06.004 > DOI: 10.1016/j.jctb.2020.06.004.
    • APA

      Han, J., Jenssen, M., Kohayakawa, Y., Mota, G. O., & Roberts, B. (2020). The multicolour size-Ramsey number of powers of paths. Journal of Combinatorial Theory, Series B, 145, 359-375. doi:10.1016/j.jctb.2020.06.004
    • NLM

      Han J, Jenssen M, Kohayakawa Y, Mota GO, Roberts B. The multicolour size-Ramsey number of powers of paths [Internet]. Journal of Combinatorial Theory, Series B. 2020 ; 145 359-375.Available from: https://doi.org/10.1016/j.jctb.2020.06.004
    • Vancouver

      Han J, Jenssen M, Kohayakawa Y, Mota GO, Roberts B. The multicolour size-Ramsey number of powers of paths [Internet]. Journal of Combinatorial Theory, Series B. 2020 ; 145 359-375.Available from: https://doi.org/10.1016/j.jctb.2020.06.004
  • Unidade: IME

    Assunto: CIÊNCIA DA COMPUTAÇÃO

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Gabriel; KOHAYAKAWA, Yoshiharu; SANTOS, Vinicius dos; URRUTIA, Sebastião. Electronic Notes in Theoretical Computer Science. [S.l: s.n.], 2020.Disponível em: .
    • APA

      Coutinho, G., Kohayakawa, Y., Santos, V. dos, & Urrutia, S. (2020). Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. Recuperado de https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/346/suppl/C
    • NLM

      Coutinho G, Kohayakawa Y, Santos V dos, Urrutia S. Electronic Notes in Theoretical Computer Science [Internet]. 2020 ;Available from: https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/346/suppl/C
    • Vancouver

      Coutinho G, Kohayakawa Y, Santos V dos, Urrutia S. Electronic Notes in Theoretical Computer Science [Internet]. 2020 ;Available from: https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/346/suppl/C
  • Fonte: Journal of Graph Theory. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Disponível em 18/04/2021Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; KOHAYAKAWA, Yoshiharu; MORRIS, Patrick; PERSON, Yury. Finding any given 2-factor in sparse pseudorandom graphs efficiently. Journal of Graph Theory, New York, Wiley, 2020. Disponível em: < http://dx.doi.org/10.1002/jgt.22576 > DOI: 10.1002/jgt.22576.
    • APA

      Han, J., Kohayakawa, Y., Morris, P., & Person, Y. (2020). Finding any given 2-factor in sparse pseudorandom graphs efficiently. Journal of Graph Theory. doi:10.1002/jgt.22576
    • NLM

      Han J, Kohayakawa Y, Morris P, Person Y. Finding any given 2-factor in sparse pseudorandom graphs efficiently [Internet]. Journal of Graph Theory. 2020 ;Available from: http://dx.doi.org/10.1002/jgt.22576
    • Vancouver

      Han J, Kohayakawa Y, Morris P, Person Y. Finding any given 2-factor in sparse pseudorandom graphs efficiently [Internet]. Journal of Graph Theory. 2020 ;Available from: http://dx.doi.org/10.1002/jgt.22576
  • Fonte: Combinatorics, Probability and Computing. Unidade: IME

    Assuntos: TEORIA DOS GRAFOS, ALGORITMOS PARA PROCESSAMENTO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos; KOHAYAKAWA, Yoshiharu; LANG, Richard; LEFMANN, Hanno; STAGNI, Henrique. Estimating parameters associated with monotone properties. Combinatorics, Probability and Computing, Cambridge, Cambridge University Press (CUP), v. 29, n. 4, p. 616-632, 2020. Disponível em: < https://doi.org/10.1017/S0963548320000048 > DOI: 10.1017/S0963548320000048.
    • APA

      Hoppen, C., Kohayakawa, Y., Lang, R., Lefmann, H., & Stagni, H. (2020). Estimating parameters associated with monotone properties. Combinatorics, Probability and Computing, 29( 4), 616-632. doi:10.1017/S0963548320000048
    • NLM

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating parameters associated with monotone properties [Internet]. Combinatorics, Probability and Computing. 2020 ; 29( 4): 616-632.Available from: https://doi.org/10.1017/S0963548320000048
    • Vancouver

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating parameters associated with monotone properties [Internet]. Combinatorics, Probability and Computing. 2020 ; 29( 4): 616-632.Available from: https://doi.org/10.1017/S0963548320000048
  • Fonte: Acta Mathematica Universitatis Comenianae. Unidade: IME

    Assuntos: COMBINATÓRIA, TEORIA DA COMPUTAÇÃO

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; KOHAYAKAWA, Yoshiharu; SALES, Marcelo Tadeu; STAGNI, Henrique. On some extremal results for order types. Acta Mathematica Universitatis Comenianae, Bratislava, Univerzita Komenskeho; Fakulta Matematiky, Fyziky a Informatiky, v. 88, n. 3, p. 779-785, 2019. Disponível em: < http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1305 >.
    • APA

      Han, J., Kohayakawa, Y., Sales, M. T., & Stagni, H. (2019). On some extremal results for order types. Acta Mathematica Universitatis Comenianae, 88( 3), 779-785. Recuperado de http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1305
    • NLM

      Han J, Kohayakawa Y, Sales MT, Stagni H. On some extremal results for order types [Internet]. Acta Mathematica Universitatis Comenianae. 2019 ; 88( 3): 779-785.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1305
    • Vancouver

      Han J, Kohayakawa Y, Sales MT, Stagni H. On some extremal results for order types [Internet]. Acta Mathematica Universitatis Comenianae. 2019 ; 88( 3): 779-785.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1305
  • Fonte: Journal of Graph Theory. Unidade: IME

    Assuntos: COMBINATÓRIA, TEORIA DOS GRAFOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLEMENS, Dennis; JENSSEN, Matthew; KOHAYAKAWA, Yoshiharu; et al. The size-Ramsey number of powers of paths. Journal of Graph Theory, Hoboken, Wiley, v. 91, n. 3, p. 290-299, 2019. Disponível em: < http://dx.doi.org/10.1002/jgt.22432 > DOI: 10.1002/jgt.22432.
    • APA

      Clemens, D., Jenssen, M., Kohayakawa, Y., Morrison, N., Mota, G. O., Reding, D., & Roberts, B. (2019). The size-Ramsey number of powers of paths. Journal of Graph Theory, 91( 3), 290-299. doi:10.1002/jgt.22432
    • NLM

      Clemens D, Jenssen M, Kohayakawa Y, Morrison N, Mota GO, Reding D, Roberts B. The size-Ramsey number of powers of paths [Internet]. Journal of Graph Theory. 2019 ; 91( 3): 290-299.Available from: http://dx.doi.org/10.1002/jgt.22432
    • Vancouver

      Clemens D, Jenssen M, Kohayakawa Y, Morrison N, Mota GO, Reding D, Roberts B. The size-Ramsey number of powers of paths [Internet]. Journal of Graph Theory. 2019 ; 91( 3): 290-299.Available from: http://dx.doi.org/10.1002/jgt.22432
  • Fonte: Acta mathematica universitatis comenianae. Unidade: IME

    Assuntos: COMBINATÓRIA, TEORIA DOS GRAFOS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu; MENDONÇA, Walner; MOTA, Guilherme; SCHÜLKE, Bjarne. Covering 3-coloured random graphs with monochromatic trees. Acta mathematica universitatis comenianae, Bratislava, Univerzita Komenskeho; Fakulta Matematiky, Fyziky a Informatiky, v. 88, n. 3, p. 871-875, 2019. Disponível em: < http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1310 >.
    • APA

      Kohayakawa, Y., Mendonça, W., Mota, G., & Schülke, B. (2019). Covering 3-coloured random graphs with monochromatic trees. Acta mathematica universitatis comenianae, 88( 3), 871-875. Recuperado de http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1310
    • NLM

      Kohayakawa Y, Mendonça W, Mota G, Schülke B. Covering 3-coloured random graphs with monochromatic trees [Internet]. Acta mathematica universitatis comenianae. 2019 ; 88( 3): 871-875.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1310
    • Vancouver

      Kohayakawa Y, Mendonça W, Mota G, Schülke B. Covering 3-coloured random graphs with monochromatic trees [Internet]. Acta mathematica universitatis comenianae. 2019 ; 88( 3): 871-875.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1310
  • Fonte: Proceedings. Nome do evento: ACM-SIAM Symposium on Discrete Algorithms - SODA. Unidade: IME

    Assunto: COMBINATÓRIA PROBABILÍSTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; KOHAYAKAWA, Yoshiharu; SALES, Marcelo T; STAGNI, Henrique. Extremal and probabilistic results for order types. Anais.. Philadelphia: SIAM, 2019.Disponível em: DOI: 10.1137/1.9781611975482.27.
    • APA

      Han, J., Kohayakawa, Y., Sales, M. T., & Stagni, H. (2019). Extremal and probabilistic results for order types. In Proceedings. Philadelphia: SIAM. doi:10.1137/1.9781611975482.27
    • NLM

      Han J, Kohayakawa Y, Sales MT, Stagni H. Extremal and probabilistic results for order types [Internet]. Proceedings. 2019 ;Available from: http://dx.doi.org/10.1137/1.9781611975482.27
    • Vancouver

      Han J, Kohayakawa Y, Sales MT, Stagni H. Extremal and probabilistic results for order types [Internet]. Proceedings. 2019 ;Available from: http://dx.doi.org/10.1137/1.9781611975482.27
  • Fonte: Electronic Notes in Theoretical Computer Science. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Gabriel; KOHAYAKAWA, Yoshiharu; SANTOS, Vinicius dos; URRUTIA, Sebastián. We are happy to organize this issue of the Electronic Notes in Theoretical Computer Science. [Prefácio]. Electronic Notes in Theoretical Computer Science[S.l: s.n.], 2019.Disponível em: DOI: 10.1016/j.entcs.2019.08.001.
    • APA

      Coutinho, G., Kohayakawa, Y., Santos, V. dos, & Urrutia, S. (2019). We are happy to organize this issue of the Electronic Notes in Theoretical Computer Science. [Prefácio]. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. doi:10.1016/j.entcs.2019.08.001
    • NLM

      Coutinho G, Kohayakawa Y, Santos V dos, Urrutia S. We are happy to organize this issue of the Electronic Notes in Theoretical Computer Science. [Prefácio] [Internet]. Electronic Notes in Theoretical Computer Science. 2019 ; 346 1-2.Available from: https://doi.org/10.1016/j.entcs.2019.08.001
    • Vancouver

      Coutinho G, Kohayakawa Y, Santos V dos, Urrutia S. We are happy to organize this issue of the Electronic Notes in Theoretical Computer Science. [Prefácio] [Internet]. Electronic Notes in Theoretical Computer Science. 2019 ; 346 1-2.Available from: https://doi.org/10.1016/j.entcs.2019.08.001
  • Fonte: Random Structures & Algorithms. Unidade: IME

    Assuntos: TEORIA DOS GRAFOS, MÉTODOS PROBABILÍSTICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu; RETTER, Troy; RODL, Vojtech. The size Ramsey number of short subdivisions of bounded degree graphs. Random Structures & Algorithms, New York, Wiley, v. 54, n. 2, p. 304-339, 2019. Disponível em: < http://dx.doi.org/10.1002/rsa.20783 > DOI: 10.1002/rsa.20783.
    • APA

      Kohayakawa, Y., Retter, T., & Rodl, V. (2019). The size Ramsey number of short subdivisions of bounded degree graphs. Random Structures & Algorithms, 54( 2), 304-339. doi:10.1002/rsa.20783
    • NLM

      Kohayakawa Y, Retter T, Rodl V. The size Ramsey number of short subdivisions of bounded degree graphs [Internet]. Random Structures & Algorithms. 2019 ; 54( 2): 304-339.Available from: http://dx.doi.org/10.1002/rsa.20783
    • Vancouver

      Kohayakawa Y, Retter T, Rodl V. The size Ramsey number of short subdivisions of bounded degree graphs [Internet]. Random Structures & Algorithms. 2019 ; 54( 2): 304-339.Available from: http://dx.doi.org/10.1002/rsa.20783
  • Fonte: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Assuntos: GRAFOS ALEATÓRIOS, COMBINATÓRIA PROBABILÍSTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu; MOTA, Guilherme Oliveira; SCHACHT, Mathias. Monochromatic trees in random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge, Cambridge University Press, v. 166, n. 1, p. 191-208, 2019. Disponível em: < https://dx.doi.org/10.1017/S0305004117000846 > DOI: 10.1017/S0305004117000846.
    • APA

      Kohayakawa, Y., Mota, G. O., & Schacht, M. (2019). Monochromatic trees in random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 166( 1), 191-208. doi:10.1017/S0305004117000846
    • NLM

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2019 ; 166( 1): 191-208.Available from: https://dx.doi.org/10.1017/S0305004117000846
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2019 ; 166( 1): 191-208.Available from: https://dx.doi.org/10.1017/S0305004117000846
  • Fonte: Random Structures & Algorithms. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BÖTTCHER, Julia; HAN, Jie; KOHAYAKAWA, Yoshiharu; et al. Universality for bounded degree spanning trees in randomly perturbed graphs. Random Structures & Algorithms, Hoboken, Wiley and Sons, 2019. Disponível em: < https://doi.org/10.1002/rsa.20850 > DOI: 10.1002/rsa.20850.
    • APA

      Böttcher, J., Han, J., Kohayakawa, Y., Montgomery, R., Parczyk, O., & Person, Y. (2019). Universality for bounded degree spanning trees in randomly perturbed graphs. Random Structures & Algorithms. doi:10.1002/rsa.20850
    • NLM

      Böttcher J, Han J, Kohayakawa Y, Montgomery R, Parczyk O, Person Y. Universality for bounded degree spanning trees in randomly perturbed graphs [Internet]. Random Structures & Algorithms. 2019 ;Available from: https://doi.org/10.1002/rsa.20850
    • Vancouver

      Böttcher J, Han J, Kohayakawa Y, Montgomery R, Parczyk O, Person Y. Universality for bounded degree spanning trees in randomly perturbed graphs [Internet]. Random Structures & Algorithms. 2019 ;Available from: https://doi.org/10.1002/rsa.20850
  • Fonte: Random Structures & Algorithms. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEDENKNECHT, Wiebke; HAN, Jie; KOHAYAKAWA, Yoshiharu; MOTA, Guilherme Oliveira. Powers of tight Hamilton cycles in randomly perturbed hypergraphs. Random Structures & Algorithms, New York, Wiley, v. 55, n. 4, p. 795-807, 2019. Disponível em: < https://doi.org/10.1002/rsa.20885 > DOI: 10.1002/rsa.20885.
    • APA

      Bedenknecht, W., Han, J., Kohayakawa, Y., & Mota, G. O. (2019). Powers of tight Hamilton cycles in randomly perturbed hypergraphs. Random Structures & Algorithms, 55( 4), 795-807. doi:10.1002/rsa.20885
    • NLM

      Bedenknecht W, Han J, Kohayakawa Y, Mota GO. Powers of tight Hamilton cycles in randomly perturbed hypergraphs [Internet]. Random Structures & Algorithms. 2019 ; 55( 4): 795-807.Available from: https://doi.org/10.1002/rsa.20885
    • Vancouver

      Bedenknecht W, Han J, Kohayakawa Y, Mota GO. Powers of tight Hamilton cycles in randomly perturbed hypergraphs [Internet]. Random Structures & Algorithms. 2019 ; 55( 4): 795-807.Available from: https://doi.org/10.1002/rsa.20885
  • Fonte: Acta mathematica Universitatis Comenianae. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGER, Sören; KOHAYAKAWA, Yoshiharu; MAESAKA, Giulia Satiko; et al. The size-Ramsey number of powers of bounded degree trees. Acta mathematica Universitatis Comenianae, Bratislava, Bratislava Ústav aplikovanej matematiky Fakulty matematiky, fyziky a informatiky Univerzity Komenského, v. 88, n. 3, p. 451-456, 2019. Disponível em: < http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281 >.
    • APA

      Berger, S., Kohayakawa, Y., Maesaka, G. S., Martins, T., Mendonça, W., Mota, G. O., & Parczyk, O. (2019). The size-Ramsey number of powers of bounded degree trees. Acta mathematica Universitatis Comenianae, 88( 3), 451-456. Recuperado de http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
    • NLM

      Berger S, Kohayakawa Y, Maesaka GS, Martins T, Mendonça W, Mota GO, Parczyk O. The size-Ramsey number of powers of bounded degree trees [Internet]. Acta mathematica Universitatis Comenianae. 2019 ; 88( 3): 451-456.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
    • Vancouver

      Berger S, Kohayakawa Y, Maesaka GS, Martins T, Mendonça W, Mota GO, Parczyk O. The size-Ramsey number of powers of bounded degree trees [Internet]. Acta mathematica Universitatis Comenianae. 2019 ; 88( 3): 451-456.Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
  • Fonte: Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; KOHAYAKAWA, Yoshiharu. On hypergraphs without loose cycles. Discrete Mathematics, Amsterdam, Elsevier, v. 341, n. 4, p. 946-949, 2018. Disponível em: < http://dx.doi.org/10.1016/j.disc.2017.12.015 > DOI: 10.1016/j.disc.2017.12.015.
    • APA

      Han, J., & Kohayakawa, Y. (2018). On hypergraphs without loose cycles. Discrete Mathematics, 341( 4), 946-949. doi:10.1016/j.disc.2017.12.015
    • NLM

      Han J, Kohayakawa Y. On hypergraphs without loose cycles [Internet]. Discrete Mathematics. 2018 ; 341( 4): 946-949.Available from: http://dx.doi.org/10.1016/j.disc.2017.12.015
    • Vancouver

      Han J, Kohayakawa Y. On hypergraphs without loose cycles [Internet]. Discrete Mathematics. 2018 ; 341( 4): 946-949.Available from: http://dx.doi.org/10.1016/j.disc.2017.12.015
  • Fonte: Proceedings. Nome do evento: Latin American Symposium on Theoretical Informatics - LATIN 2018. Unidade: IME

    Assunto: MATEMÁTICA DA COMPUTAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie; KOHAYAKAWA, Yoshiharu; SALES, Marcelo Tadeu; STAGNI, Henrique. Property testing for point sets on the plane. Anais.. Cham: Springer, 2018.Disponível em: DOI: 10.1007/978-3-319-77404-6_43.
    • APA

      Han, J., Kohayakawa, Y., Sales, M. T., & Stagni, H. (2018). Property testing for point sets on the plane. In Proceedings. Cham: Springer. doi:10.1007/978-3-319-77404-6_43
    • NLM

      Han J, Kohayakawa Y, Sales MT, Stagni H. Property testing for point sets on the plane [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1007/978-3-319-77404-6_43
    • Vancouver

      Han J, Kohayakawa Y, Sales MT, Stagni H. Property testing for point sets on the plane [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1007/978-3-319-77404-6_43
  • Fonte: Proceedings. Nome do evento: Latin American Symposium on Theoretical Informatics - LATIN 2018. Unidade: IME

    Assuntos: OTIMIZAÇÃO COMBINATÓRIA, ALGORITMOS PARA PROCESSAMENTO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu; MIYAZAWA, Flávio Keidi; WAKABAYASHI, Yoshiko. A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game. Anais.. Cham: Springer, 2018.Disponível em: DOI: 10.1007/978-3-319-77404-6_51.
    • APA

      Kohayakawa, Y., Miyazawa, F. K., & Wakabayashi, Y. (2018). A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game. In Proceedings. Cham: Springer. doi:10.1007/978-3-319-77404-6_51
    • NLM

      Kohayakawa Y, Miyazawa FK, Wakabayashi Y. A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game [Internet]. Proceedings. 2018 ;Available from: https://doi.org/10.1007/978-3-319-77404-6_51
    • Vancouver

      Kohayakawa Y, Miyazawa FK, Wakabayashi Y. A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game [Internet]. Proceedings. 2018 ;Available from: https://doi.org/10.1007/978-3-319-77404-6_51
  • Fonte: SIAM Journal on Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu; LEE, Sang June; MOREIRA, Carlos Gustavo; RÖDL, Vojtěch. Infinite Sidon sets contained in sparse random sets of integers. SIAM Journal on Discrete Mathematics, Philadelphia, v. 32, n. 1, p. 410-449, 2018. Disponível em: < https://dx.doi.org/10.1137/17M1114934 > DOI: 10.1137/17M1114934.
    • APA

      Kohayakawa, Y., Lee, S. J., Moreira, C. G., & Rödl, V. (2018). Infinite Sidon sets contained in sparse random sets of integers. SIAM Journal on Discrete Mathematics, 32( 1), 410-449. doi:10.1137/17M1114934
    • NLM

      Kohayakawa Y, Lee SJ, Moreira CG, Rödl V. Infinite Sidon sets contained in sparse random sets of integers [Internet]. SIAM Journal on Discrete Mathematics. 2018 ; 32( 1): 410-449.Available from: https://dx.doi.org/10.1137/17M1114934
    • Vancouver

      Kohayakawa Y, Lee SJ, Moreira CG, Rödl V. Infinite Sidon sets contained in sparse random sets of integers [Internet]. SIAM Journal on Discrete Mathematics. 2018 ; 32( 1): 410-449.Available from: https://dx.doi.org/10.1137/17M1114934
  • Fonte: Proceedings of the London Mathematical Society. Unidade: IME

    Assuntos: TEORIA DOS NÚMEROS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELLAMONICA, Domingos; KOHAYAKAWA, Yoshiharu; LEE, Sang June; RÖDL, Vojtěch; SAMOTIJ, Wojciech. The number of Bh-sets of a given cardinality. Proceedings of the London Mathematical Society, Chichester, v. 116, n. 3, p. 629-669, 2018. Disponível em: < https://dx.doi.org/10.1112/plms.12082 > DOI: 10.1112/plms.12082.
    • APA

      Dellamonica, D., Kohayakawa, Y., Lee, S. J., Rödl, V., & Samotij, W. (2018). The number of Bh-sets of a given cardinality. Proceedings of the London Mathematical Society, 116( 3), 629-669. doi:10.1112/plms.12082
    • NLM

      Dellamonica D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of Bh-sets of a given cardinality [Internet]. Proceedings of the London Mathematical Society. 2018 ; 116( 3): 629-669.Available from: https://dx.doi.org/10.1112/plms.12082
    • Vancouver

      Dellamonica D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of Bh-sets of a given cardinality [Internet]. Proceedings of the London Mathematical Society. 2018 ; 116( 3): 629-669.Available from: https://dx.doi.org/10.1112/plms.12082

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2020