Filtros : "Discrete Mathematics" Limpar

Filtros



Refine with date range


  • Source: Discrete Mathematics. Unidade: IME

    Subjects: COMBINATÓRIA, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu et al. The anti-Ramsey threshold of complete graphs. Discrete Mathematics, v. 346, n. 5, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.disc.2023.113343. Acesso em: 04 jan. 2026.
    • APA

      Kohayakawa, Y., Mota, G. O., Parczyk, O., & Schnitzer, J. (2023). The anti-Ramsey threshold of complete graphs. Discrete Mathematics, 346( 5), 1-12. doi:10.1016/j.disc.2023.113343
    • NLM

      Kohayakawa Y, Mota GO, Parczyk O, Schnitzer J. The anti-Ramsey threshold of complete graphs [Internet]. Discrete Mathematics. 2023 ; 346( 5): 1-12.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2023.113343
    • Vancouver

      Kohayakawa Y, Mota GO, Parczyk O, Schnitzer J. The anti-Ramsey threshold of complete graphs [Internet]. Discrete Mathematics. 2023 ; 346( 5): 1-12.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2023.113343
  • Source: Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie e KOHAYAKAWA, Yoshiharu. On hypergraphs without loose cycles. Discrete Mathematics, v. 341, n. 4, p. 946-949, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.disc.2017.12.015. Acesso em: 04 jan. 2026.
    • APA

      Han, J., & Kohayakawa, Y. (2018). On hypergraphs without loose cycles. Discrete Mathematics, 341( 4), 946-949. doi:10.1016/j.disc.2017.12.015
    • NLM

      Han J, Kohayakawa Y. On hypergraphs without loose cycles [Internet]. Discrete Mathematics. 2018 ; 341( 4): 946-949.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2017.12.015
    • Vancouver

      Han J, Kohayakawa Y. On hypergraphs without loose cycles [Internet]. Discrete Mathematics. 2018 ; 341( 4): 946-949.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2017.12.015
  • Source: Discrete Mathematics. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos e KOHAYAKAWA, Yoshiharu e LEFMANN, Hanno. Edge-colorings of uniform hypergraphs avoiding monochromatic matchings. Discrete Mathematics, v. 338, n. 2, p. 262-271, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.disc.2014.10.004. Acesso em: 04 jan. 2026.
    • APA

      Hoppen, C., Kohayakawa, Y., & Lefmann, H. (2015). Edge-colorings of uniform hypergraphs avoiding monochromatic matchings. Discrete Mathematics, 338( 2), 262-271. doi:10.1016/j.disc.2014.10.004
    • NLM

      Hoppen C, Kohayakawa Y, Lefmann H. Edge-colorings of uniform hypergraphs avoiding monochromatic matchings [Internet]. Discrete Mathematics. 2015 ; 338( 2): 262-271.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2014.10.004
    • Vancouver

      Hoppen C, Kohayakawa Y, Lefmann H. Edge-colorings of uniform hypergraphs avoiding monochromatic matchings [Internet]. Discrete Mathematics. 2015 ; 338( 2): 262-271.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.disc.2014.10.004
  • Source: Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ERDOS, Paul e GYÁRFÁS, András e KOHAYAKAWA, Yoshiharu. The size of the largest bipartite subgraphs. Discrete Mathematics, v. 177, n. 1/3, p. 267-271, 1997Tradução . . Disponível em: https://doi.org/10.1016/S0012-365X(97)00004-6. Acesso em: 04 jan. 2026.
    • APA

      Erdos, P., Gyárfás, A., & Kohayakawa, Y. (1997). The size of the largest bipartite subgraphs. Discrete Mathematics, 177( 1/3), 267-271. doi:10.1016/S0012-365X(97)00004-6
    • NLM

      Erdos P, Gyárfás A, Kohayakawa Y. The size of the largest bipartite subgraphs [Internet]. Discrete Mathematics. 1997 ; 177( 1/3): 267-271.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/S0012-365X(97)00004-6
    • Vancouver

      Erdos P, Gyárfás A, Kohayakawa Y. The size of the largest bipartite subgraphs [Internet]. Discrete Mathematics. 1997 ; 177( 1/3): 267-271.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/S0012-365X(97)00004-6
  • Source: Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e WOJCIECHOWSKI, Jerzy. On small graphs with highly imperfect powers. Discrete Mathematics, v. 104, n. 3 , p. 245-61, 1992Tradução . . Disponível em: https://doi.org/10.1016/0012-365X(92)90447-N. Acesso em: 04 jan. 2026.
    • APA

      Kohayakawa, Y., & Wojciechowski, J. (1992). On small graphs with highly imperfect powers. Discrete Mathematics, 104( 3 ), 245-61. doi:10.1016/0012-365X(92)90447-N
    • NLM

      Kohayakawa Y, Wojciechowski J. On small graphs with highly imperfect powers [Internet]. Discrete Mathematics. 1992 ;104( 3 ): 245-61.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/0012-365X(92)90447-N
    • Vancouver

      Kohayakawa Y, Wojciechowski J. On small graphs with highly imperfect powers [Internet]. Discrete Mathematics. 1992 ;104( 3 ): 245-61.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/0012-365X(92)90447-N

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026