Filtros : "2013" Limpar

Filtros



Refine with date range


  • Source: Information theory, combinatorics, and search theory: in memory of Rudolf Ahlswede. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos e KOHAYAKAWA, Yoshiharu e LEFMANN, Hanno. An unstable hypergraph problem with a unique optimal solution. Information theory, combinatorics, and search theory: in memory of Rudolf Ahlswede. Tradução . Berlin: Springer, 2013. . Disponível em: https://doi.org/10.1007/978-3-642-36899-8_20. Acesso em: 05 jan. 2026.
    • APA

      Hoppen, C., Kohayakawa, Y., & Lefmann, H. (2013). An unstable hypergraph problem with a unique optimal solution. In Information theory, combinatorics, and search theory: in memory of Rudolf Ahlswede. Berlin: Springer. doi:10.1007/978-3-642-36899-8_20
    • NLM

      Hoppen C, Kohayakawa Y, Lefmann H. An unstable hypergraph problem with a unique optimal solution [Internet]. In: Information theory, combinatorics, and search theory: in memory of Rudolf Ahlswede. Berlin: Springer; 2013. [citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/978-3-642-36899-8_20
    • Vancouver

      Hoppen C, Kohayakawa Y, Lefmann H. An unstable hypergraph problem with a unique optimal solution [Internet]. In: Information theory, combinatorics, and search theory: in memory of Rudolf Ahlswede. Berlin: Springer; 2013. [citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/978-3-642-36899-8_20
  • Source: Journal of Combinatorial Theory, Series B. Unidade: IME

    Subjects: COMBINATÓRIA, PERMUTAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos et al. Limits of permutation sequences. Journal of Combinatorial Theory, Series B, v. 103, n. 1, p. 93-113, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jctb.2012.09.003. Acesso em: 05 jan. 2026.
    • APA

      Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B., & Sampaio, R. M. (2013). Limits of permutation sequences. Journal of Combinatorial Theory, Series B, 103( 1), 93-113. doi:10.1016/j.jctb.2012.09.003
    • NLM

      Hoppen C, Kohayakawa Y, Moreira CG, Ráth B, Sampaio RM. Limits of permutation sequences [Internet]. Journal of Combinatorial Theory, Series B. 2013 ; 103( 1): 93-113.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jctb.2012.09.003
    • Vancouver

      Hoppen C, Kohayakawa Y, Moreira CG, Ráth B, Sampaio RM. Limits of permutation sequences [Internet]. Journal of Combinatorial Theory, Series B. 2013 ; 103( 1): 93-113.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jctb.2012.09.003
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Latin-American Algorithms, Graphs, and Optimization Symposium - LAGOS. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. An approximate blow-up lemma for sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2013.10.061. Acesso em: 05 jan. 2026. , 2013
    • APA

      Allen, P., Böttcher, J., Hàn, H., Kohayakawa, Y., & Person, Y. (2013). An approximate blow-up lemma for sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2013.10.061
    • NLM

      Allen P, Böttcher J, Hàn H, Kohayakawa Y, Person Y. An approximate blow-up lemma for sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 44 393-398.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.endm.2013.10.061
    • Vancouver

      Allen P, Böttcher J, Hàn H, Kohayakawa Y, Person Y. An approximate blow-up lemma for sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 44 393-398.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.endm.2013.10.061
  • Source: Combinatorics, Probability & Computing. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTTCHER, Julia e KOHAYAKAWA, Yoshiharu e TARAZ, Anusch. Almost spanning subgraphs of random graphs after adversarial edge removal. Combinatorics, Probability & Computing, v. 22, n. 5, p. 639-683, 2013Tradução . . Disponível em: https://doi.org/10.1017/S0963548313000199. Acesso em: 05 jan. 2026.
    • APA

      Bottcher, J., Kohayakawa, Y., & Taraz, A. (2013). Almost spanning subgraphs of random graphs after adversarial edge removal. Combinatorics, Probability & Computing, 22( 5), 639-683. doi:10.1017/S0963548313000199
    • NLM

      Bottcher J, Kohayakawa Y, Taraz A. Almost spanning subgraphs of random graphs after adversarial edge removal [Internet]. Combinatorics, Probability & Computing. 2013 ; 22( 5): 639-683.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1017/S0963548313000199
    • Vancouver

      Bottcher J, Kohayakawa Y, Taraz A. Almost spanning subgraphs of random graphs after adversarial edge removal [Internet]. Combinatorics, Probability & Computing. 2013 ; 22( 5): 639-683.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1017/S0963548313000199
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. The chromatic thresholds of graphs. Advances in Mathematics, v. 235, p. 261-295, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2012.11.016. Acesso em: 05 jan. 2026.
    • APA

      Allen, P., Böttcher, J., Griffiths, S., Kohayakawa, Y., & Morris, R. (2013). The chromatic thresholds of graphs. Advances in Mathematics, 235, 261-295. doi:10.1016/j.aim.2012.11.016
    • NLM

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. The chromatic thresholds of graphs [Internet]. Advances in Mathematics. 2013 ; 235 261-295.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.aim.2012.11.016
    • Vancouver

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. The chromatic thresholds of graphs [Internet]. Advances in Mathematics. 2013 ; 235 261-295.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.aim.2012.11.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026