Filtros : base.keyword"Produção científica" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. Solution of the Bernstein problem in the non-regular case. Journal of Algebra, v. 223, n. 1, p. 109-132, 2000Tradução . . Disponível em: https://doi.org/10.1006/jabr.1999.8066. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2000). Solution of the Bernstein problem in the non-regular case. Journal of Algebra, 223( 1), 109-132. doi:10.1006/jabr.1999.8066
    • NLM

      Fernández JCG. Solution of the Bernstein problem in the non-regular case [Internet]. Journal of Algebra. 2000 ; 223( 1): 109-132.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1006/jabr.1999.8066
    • Vancouver

      Fernández JCG. Solution of the Bernstein problem in the non-regular case [Internet]. Journal of Algebra. 2000 ; 223( 1): 109-132.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1006/jabr.1999.8066
  • Fonte: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELGUETA, Luisa e SUAZO, Avelino e FERNÁNDEZ, Juan Carlos Gutiérrez. Nilpotence of a class of commutative power-associative nilalgebras. Journal of Algebra, v. 291, n. 2, p. 492-504, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2005.06.019. Acesso em: 16 abr. 2024.
    • APA

      Elgueta, L., Suazo, A., & Fernández, J. C. G. (2005). Nilpotence of a class of commutative power-associative nilalgebras. Journal of Algebra, 291( 2), 492-504. doi:10.1016/j.jalgebra.2005.06.019
    • NLM

      Elgueta L, Suazo A, Fernández JCG. Nilpotence of a class of commutative power-associative nilalgebras [Internet]. Journal of Algebra. 2005 ; 291( 2): 492-504.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.jalgebra.2005.06.019
    • Vancouver

      Elgueta L, Suazo A, Fernández JCG. Nilpotence of a class of commutative power-associative nilalgebras [Internet]. Journal of Algebra. 2005 ; 291( 2): 492-504.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.jalgebra.2005.06.019
  • Fonte: Algebras, Groups and Geometries. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. Simplicial periodic Bernstein algebras. Algebras, Groups and Geometries, v. 16, n. 4, p. 441-449, 1999Tradução . . Disponível em: https://repositorio.usp.br/directbitstream/605f3cf4-cfe0-4c68-9bcf-f1381c7bd75b/1072465.pdf. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (1999). Simplicial periodic Bernstein algebras. Algebras, Groups and Geometries, 16( 4), 441-449. Recuperado de https://repositorio.usp.br/directbitstream/605f3cf4-cfe0-4c68-9bcf-f1381c7bd75b/1072465.pdf
    • NLM

      Fernández JCG. Simplicial periodic Bernstein algebras [Internet]. Algebras, Groups and Geometries. 1999 ; 16( 4): 441-449.[citado 2024 abr. 16 ] Available from: https://repositorio.usp.br/directbitstream/605f3cf4-cfe0-4c68-9bcf-f1381c7bd75b/1072465.pdf
    • Vancouver

      Fernández JCG. Simplicial periodic Bernstein algebras [Internet]. Algebras, Groups and Geometries. 1999 ; 16( 4): 441-449.[citado 2024 abr. 16 ] Available from: https://repositorio.usp.br/directbitstream/605f3cf4-cfe0-4c68-9bcf-f1381c7bd75b/1072465.pdf
  • Fonte: Results in Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e SUAZO, Avelino. Commutative power-associative nilalgebras of nilindex 5. Results in Mathematics, v. 47, n. 2, p. 296-304, 2005Tradução . . Disponível em: https://doi.org/10.1007/BF03323030. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Suazo, A. (2005). Commutative power-associative nilalgebras of nilindex 5. Results in Mathematics, 47( 2), 296-304. doi:10.1007/BF03323030
    • NLM

      Fernández JCG, Suazo A. Commutative power-associative nilalgebras of nilindex 5 [Internet]. Results in Mathematics. 2005 ; 47( 2): 296-304.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/BF03323030
    • Vancouver

      Fernández JCG, Suazo A. Commutative power-associative nilalgebras of nilindex 5 [Internet]. Results in Mathematics. 2005 ; 47( 2): 296-304.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/BF03323030
  • Fonte: Proyecciones (Antofagasta). Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. On conmutative left-nilalgebras of index 4. Proyecciones (Antofagasta), v. 27, n. 1, p. 103-111, 2008Tradução . . Disponível em: https://doi.org/10.4067/S0716-09172008000100007. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2008). On conmutative left-nilalgebras of index 4. Proyecciones (Antofagasta), 27( 1), 103-111. doi:10.4067/S0716-09172008000100007
    • NLM

      Fernández JCG. On conmutative left-nilalgebras of index 4 [Internet]. Proyecciones (Antofagasta). 2008 ; 27( 1): 103-111.[citado 2024 abr. 16 ] Available from: https://doi.org/10.4067/S0716-09172008000100007
    • Vancouver

      Fernández JCG. On conmutative left-nilalgebras of index 4 [Internet]. Proyecciones (Antofagasta). 2008 ; 27( 1): 103-111.[citado 2024 abr. 16 ] Available from: https://doi.org/10.4067/S0716-09172008000100007
  • Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. On right-nilalgebras of index 4. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/08b35b5c-d6d6-4760-a2ee-77c63ffe45db/1537644.pdf. Acesso em: 16 abr. 2024. , 2006
    • APA

      Fernández, J. C. G. (2006). On right-nilalgebras of index 4. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/08b35b5c-d6d6-4760-a2ee-77c63ffe45db/1537644.pdf
    • NLM

      Fernández JCG. On right-nilalgebras of index 4 [Internet]. 2006 ;[citado 2024 abr. 16 ] Available from: https://repositorio.usp.br/directbitstream/08b35b5c-d6d6-4760-a2ee-77c63ffe45db/1537644.pdf
    • Vancouver

      Fernández JCG. On right-nilalgebras of index 4 [Internet]. 2006 ;[citado 2024 abr. 16 ] Available from: https://repositorio.usp.br/directbitstream/08b35b5c-d6d6-4760-a2ee-77c63ffe45db/1537644.pdf
  • Fonte: Linear Algebra and its Applications. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TRANSFORMAÇÕES LINEARES, TRANSFORMAÇÕES SEMILINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VANEGAS, Elkin Oveimar Quintero e FERNÁNDEZ, Juan Carlos Gutiérrez. Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, v. 518, p. 57-78, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.12.026. Acesso em: 16 abr. 2024.
    • APA

      Vanegas, E. O. Q., & Fernández, J. C. G. (2017). Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, 518, 57-78. doi:10.1016/j.laa.2016.12.026
    • NLM

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
    • Vancouver

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. Principal and plenary train algebras. Communications in Algebra, v. 28, n. 2, p. 653-667, 2000Tradução . . Disponível em: https://doi.org/10.1080/00927870008826850. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2000). Principal and plenary train algebras. Communications in Algebra, 28( 2), 653-667. doi:10.1080/00927870008826850
    • NLM

      Fernández JCG. Principal and plenary train algebras [Internet]. Communications in Algebra. 2000 ; 28( 2): 653-667.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927870008826850
    • Vancouver

      Fernández JCG. Principal and plenary train algebras [Internet]. Communications in Algebra. 2000 ; 28( 2): 653-667.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927870008826850
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. On Jordan-nilalgebras of index 3. Communications in Algebra, v. 44, n. 10, p. 4277-4293, 2016Tradução . . Disponível em: https://doi.org/10.1080/00927872.2015.1087542. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2016). On Jordan-nilalgebras of index 3. Communications in Algebra, 44( 10), 4277-4293. doi:10.1080/00927872.2015.1087542
    • NLM

      Fernández JCG, Garcia CI. On Jordan-nilalgebras of index 3 [Internet]. Communications in Algebra. 2016 ; 44( 10): 4277-4293.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927872.2015.1087542
    • Vancouver

      Fernández JCG, Garcia CI. On Jordan-nilalgebras of index 3 [Internet]. Communications in Algebra. 2016 ; 44( 10): 4277-4293.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927872.2015.1087542
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. On commutative power-associative nilalgebras. Communications in Algebra, v. 32, n. 6, p. 2243-2250, 2004Tradução . . Disponível em: https://doi.org/10.1081/AGB-120037217. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2004). On commutative power-associative nilalgebras. Communications in Algebra, 32( 6), 2243-2250. doi:10.1081/AGB-120037217
    • NLM

      Fernández JCG. On commutative power-associative nilalgebras [Internet]. Communications in Algebra. 2004 ; 32( 6): 2243-2250.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1081/AGB-120037217
    • Vancouver

      Fernández JCG. On commutative power-associative nilalgebras [Internet]. Communications in Algebra. 2004 ; 32( 6): 2243-2250.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1081/AGB-120037217
  • Fonte: Proyecciones. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, BIOMATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTO, Maria Aparecida e FERNÁNDEZ, Juan Carlos Gutiérrez. Dibaric algebras. Proyecciones, v. 19, n. 3, p. 249-269, 2000Tradução . . Disponível em: https://doi.org/10.4067/S0716-09172000000300003. Acesso em: 16 abr. 2024.
    • APA

      Couto, M. A., & Fernández, J. C. G. (2000). Dibaric algebras. Proyecciones, 19( 3), 249-269. doi:10.4067/S0716-09172000000300003
    • NLM

      Couto MA, Fernández JCG. Dibaric algebras [Internet]. Proyecciones. 2000 ; 19( 3): 249-269.[citado 2024 abr. 16 ] Available from: https://doi.org/10.4067/S0716-09172000000300003
    • Vancouver

      Couto MA, Fernández JCG. Dibaric algebras [Internet]. Proyecciones. 2000 ; 19( 3): 249-269.[citado 2024 abr. 16 ] Available from: https://doi.org/10.4067/S0716-09172000000300003
  • Fonte: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e MARTÍNEZ, Consuelo. Nuclear Bernstein algebras with a stochastic basis. Journal of Algebra, v. 217, n. 1, p. 300-311, 1999Tradução . . Disponível em: https://doi.org/10.1006/jabr.1998.7796. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Martínez, C. (1999). Nuclear Bernstein algebras with a stochastic basis. Journal of Algebra, 217( 1), 300-311. doi:10.1006/jabr.1998.7796
    • NLM

      Fernández JCG, Martínez C. Nuclear Bernstein algebras with a stochastic basis [Internet]. Journal of Algebra. 1999 ; 217( 1): 300-311.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1006/jabr.1998.7796
    • Vancouver

      Fernández JCG, Martínez C. Nuclear Bernstein algebras with a stochastic basis [Internet]. Journal of Algebra. 1999 ; 217( 1): 300-311.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1006/jabr.1998.7796
  • Fonte: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUINTERO VANEGAS, E. O e FERNÁNDEZ, Juan Carlos Gutiérrez. Power associative nilalgebras of dimension 9. Journal of Algebra, v. 495, p. 233-263, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.10.017. Acesso em: 16 abr. 2024.
    • APA

      Quintero Vanegas, E. O., & Fernández, J. C. G. (2018). Power associative nilalgebras of dimension 9. Journal of Algebra, 495, 233-263. doi:10.1016/j.jalgebra.2017.10.017
    • NLM

      Quintero Vanegas EO, Fernández JCG. Power associative nilalgebras of dimension 9 [Internet]. Journal of Algebra. 2018 ; 495 233-263.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.10.017
    • Vancouver

      Quintero Vanegas EO, Fernández JCG. Power associative nilalgebras of dimension 9 [Internet]. Journal of Algebra. 2018 ; 495 233-263.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.10.017
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. Commutative finite-dimensional algebras satisfying x(x(xy)) = 0 are nilpotent. Communications in Algebra, v. 37, n. 10, p. 3760-3776, 2009Tradução . . Disponível em: https://doi.org/10.1080/00927870802502944. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2009). Commutative finite-dimensional algebras satisfying x(x(xy)) = 0 are nilpotent. Communications in Algebra, 37( 10), 3760-3776. doi:10.1080/00927870802502944
    • NLM

      Fernández JCG. Commutative finite-dimensional algebras satisfying x(x(xy)) = 0 are nilpotent [Internet]. Communications in Algebra. 2009 ; 37( 10): 3760-3776.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927870802502944
    • Vancouver

      Fernández JCG. Commutative finite-dimensional algebras satisfying x(x(xy)) = 0 are nilpotent [Internet]. Communications in Algebra. 2009 ; 37( 10): 3760-3776.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927870802502944
  • Fonte: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. On commutative finite-dimensional nilalgebras. São Paulo Journal of Mathematical Sciences, v. 10, n. 1, p. 104-121, 2016Tradução . . Disponível em: https://doi.org/10.1007/s40863-015-0035-z. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2016). On commutative finite-dimensional nilalgebras. São Paulo Journal of Mathematical Sciences, 10( 1), 104-121. doi:10.1007/s40863-015-0035-z
    • NLM

      Fernández JCG, Garcia CI. On commutative finite-dimensional nilalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2016 ; 10( 1): 104-121.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/s40863-015-0035-z
    • Vancouver

      Fernández JCG, Garcia CI. On commutative finite-dimensional nilalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2016 ; 10( 1): 104-121.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/s40863-015-0035-z
  • Fonte: Algebra and Discrete Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez. On commutative nilalgebras of low dimension. Algebra and Discrete Mathematics, v. 9, n. 1, p. 16-30, 2010Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/619/pdf. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G. (2010). On commutative nilalgebras of low dimension. Algebra and Discrete Mathematics, 9( 1), 16-30. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/619/pdf
    • NLM

      Fernández JCG. On commutative nilalgebras of low dimension [Internet]. Algebra and Discrete Mathematics. 2010 ; 9( 1): 16-30.[citado 2024 abr. 16 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/619/pdf
    • Vancouver

      Fernández JCG. On commutative nilalgebras of low dimension [Internet]. Algebra and Discrete Mathematics. 2010 ; 9( 1): 16-30.[citado 2024 abr. 16 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/619/pdf
  • Fonte: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GRICHKOV, Alexandre e VANEGAS, Elkin Oveimar Quintero. On power-associative modules. Journal of Algebra and Its Applications, v. 22, n. 10, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219498823502055. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., Grichkov, A., & Vanegas, E. O. Q. (2023). On power-associative modules. Journal of Algebra and Its Applications, 22( 10). doi:10.1142/S0219498823502055
    • NLM

      Fernández JCG, Grichkov A, Vanegas EOQ. On power-associative modules [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 10):[citado 2024 abr. 16 ] Available from: https://doi.org/10.1142/S0219498823502055
    • Vancouver

      Fernández JCG, Grichkov A, Vanegas EOQ. On power-associative modules [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 10):[citado 2024 abr. 16 ] Available from: https://doi.org/10.1142/S0219498823502055
  • Fonte: Journal of Algebra and its Applications. Unidades: IME, EACH

    Assuntos: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, EQUAÇÕES LINEARES, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. On Lotka-Volterra algebras. Journal of Algebra and its Applications, v. 18, n. 10, p. 1-19, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0219498819501871. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2019). On Lotka-Volterra algebras. Journal of Algebra and its Applications, 18( 10), 1-19. doi:10.1142/S0219498819501871
    • NLM

      Fernández JCG, Garcia CI. On Lotka-Volterra algebras [Internet]. Journal of Algebra and its Applications. 2019 ; 18( 10): 1-19.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1142/S0219498819501871
    • Vancouver

      Fernández JCG, Garcia CI. On Lotka-Volterra algebras [Internet]. Journal of Algebra and its Applications. 2019 ; 18( 10): 1-19.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1142/S0219498819501871
  • Fonte: São Paulo Journal of Mathematical Sciences. Unidades: IME, EACH

    Assuntos: BIOMATEMÁTICA, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, EQUAÇÕES LINEARES, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. Derivations of Lotka-Volterra algebras. São Paulo Journal of Mathematical Sciences, v. 13, n. 1, p. 292-304, 2019Tradução . . Disponível em: https://doi.org/10.1007/s40863-018-0090-3. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2019). Derivations of Lotka-Volterra algebras. São Paulo Journal of Mathematical Sciences, 13( 1), 292-304. doi:10.1007/s40863-018-0090-3
    • NLM

      Fernández JCG, Garcia CI. Derivations of Lotka-Volterra algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 292-304.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/s40863-018-0090-3
    • Vancouver

      Fernández JCG, Garcia CI. Derivations of Lotka-Volterra algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 292-304.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1007/s40863-018-0090-3
  • Fonte: Communications in Algebra. Unidades: IME, EACH

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez et al. On power-associative nilalgebras of dimension n and nilindex n-1. Communications in Algebra, v. 42, n. 10, p. 4481-4497, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2013.815195. Acesso em: 16 abr. 2024.
    • APA

      Fernández, J. C. G., Garcia, C. I., Martinez Torre, J. I., & Montoya, M. L. R. (2014). On power-associative nilalgebras of dimension n and nilindex n-1. Communications in Algebra, 42( 10), 4481-4497. doi:10.1080/00927872.2013.815195
    • NLM

      Fernández JCG, Garcia CI, Martinez Torre JI, Montoya MLR. On power-associative nilalgebras of dimension n and nilindex n-1 [Internet]. Communications in Algebra. 2014 ; 42( 10): 4481-4497.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927872.2013.815195
    • Vancouver

      Fernández JCG, Garcia CI, Martinez Torre JI, Montoya MLR. On power-associative nilalgebras of dimension n and nilindex n-1 [Internet]. Communications in Algebra. 2014 ; 42( 10): 4481-4497.[citado 2024 abr. 16 ] Available from: https://doi.org/10.1080/00927872.2013.815195

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024